| Please check the examination details belo | w before ente | ring your candidate information | | | | | | |--|--------------------|---------------------------------|--|--|--|--|--| | Candidate surname | | Other names | | | | | | | Pearson Edexcel Level Eriday 19 May 2023 | | | | | | | | | Friday 19 May 2023 | Friday 19 May 2023 | | | | | | | | Morning (Time: 2 hours) | Paper
reference | 9PS0/01 | | | | | | | Psychology Advanced PAPER 1: Foundations in Psychology | | | | | | | | | You do not need any other materials | s. | Total Marks | | | | | | #### **Instructions** - Use **black** ink or ball-point pen. - **Fill in the boxes** at the top of this page with your name, centre number and candidate number. - Answer **all** questions. - Answer the questions in the spaces provided - there may be more space than you need. #### Information - The total mark for this paper is 90. - The marks for **each** question are shown in brackets - use this as a guide as to how much time to spend on each question. - The list of formulae and statistical value tables are printed at the start of this paper. - Candidates may use a calculator. #### **Advice** - Read each question carefully before you start to answer it. - Try to answer every question. - Check your answers if you have time at the end. Turn over ▶ #### FORMULAE AND STATISTICAL TABLES # Standard deviation (sample estimate) $$\sqrt{\left(\frac{\sum (x-\overline{x})^2}{n-1}\right)}$$ # Spearman's rank correlation coefficient $$1 - \frac{6\sum d^2}{n(n^2 - 1)}$$ # Critical values for Spearman's rank | | Level of significance for a one-tailed test | | | | | | | | | |----|---|----------------|--------------|--------------|--------|--|--|--|--| | | 0.05 | 0.025 | 0.01 | 0.005 | 0.0025 | | | | | | | Le | vel of signifi | icance for a | two-tailed t | test | | | | | | N | 0.10 | 0.05 | 0.025 | 0.01 | 0.005 | | | | | | 5 | 0.900 | 1.000 | 1.000 | 1.000 | 1.000 | | | | | | 6 | 0.829 | 0.886 | 0.943 | 1.000 | 1.000 | | | | | | 7 | 0.714 | 0.786 | 0.893 | 0.929 | 0.964 | | | | | | 8 | 0.643 | 0.738 | 0.833 | 0.881 | 0.905 | | | | | | 9 | 0.600 | 0.700 | 0.783 | 0.833 | 0.867 | | | | | | 10 | 0.564 | 0.648 | 0.745 | 0.794 | 0.830 | | | | | | 11 | 0.536 | 0.618 | 0.709 | 0.755 | 0.800 | | | | | | 12 | 0.503 | 0.587 | 0.678 | 0.727 | 0.769 | | | | | | 13 | 0.484 | 0.560 | 0.648 | 0.703 | 0.747 | | | | | | 14 | 0.464 | 0.538 | 0.626 | 0.679 | 0.723 | | | | | | 15 | 0.446 | 0.521 | 0.604 | 0.654 | 0.700 | | | | | | 16 | 0.429 | 0.503 | 0.582 | 0.635 | 0.679 | | | | | | 17 | 0.414 | 0.485 | 0.566 | 0.615 | 0.662 | | | | | | 18 | 0.401 | 0.472 | 0.550 | 0.600 | 0.643 | | | | | | 19 | 0.391 | 0.460 | 0.535 | 0.584 | 0.628 | | | | | | 20 | 0.380 | 0.447 | 0.520 | 0.570 | 0.612 | | | | | | 21 | 0.370 | 0.435 | 0.508 | 0.556 | 0.599 | | | | | | 22 | 0.361 | 0.425 | 0.496 | 0.544 | 0.586 | | | | | | 23 | 0.353 | 0.415 | 0.486 | 0.532 | 0.573 | | | | | | 24 | 0.344 | 0.406 | 0.476 | 0.521 | 0.562 | | | | | | 25 | 0.337 | 0.398 | 0.466 | 0.511 | 0.551 | | | | | | 26 | 0.331 | 0.390 | 0.457 | 0.501 | 0.541 | | | | | | 27 | 0.324 | 0.382 | 0.448 | 0.491 | 0.531 | | | | | | 28 | 0.317 | 0.375 | 0.440 | 0.483 | 0.522 | | | | | | 29 | 0.312 | 0.368 | 0.433 | 0.475 | 0.513 | | | | | | 30 | 0.306 | 0.362 | 0.425 | 0.467 | 0.504 | | | | | The calculated value must be equal to or exceed the critical value in this table for significance to be shown. # **Chi-squared distribution formula** $$X^{2} = \sum \frac{(O-E)^{2}}{E}$$ $df = (r-1)(c-1)$ # Critical values for chi-squared distribution | Loval | | ciani | ficanca | fa | one-tailed test | |-------|----|-------|---------|-------|-----------------| | Lever | וכ | Signi | iicance | ior a | one-talled test | | | 0.10 | 0.05 | 0.025 | 0.01 | 0.005 | 0.0005 | |----|-------|------------|-------------|------------|-------------|--------| | | | Level of s | ignificance | for a two- | tailed test | | | df | 0.20 | 0.10 | 0.05 | 0.025 | 0.01 | 0.001 | | 1 | 1.64 | 2.71 | 3.84 | 5.02 | 6.64 | 10.83 | | 2 | 3.22 | 4.61 | 5.99 | 7.38 | 9.21 | 13.82 | | 3 | 4.64 | 6.25 | 7.82 | 9.35 | 11.35 | 16.27 | | 4 | 5.99 | 7.78 | 9.49 | 11.14 | 13.28 | 18.47 | | 5 | 7.29 | 9.24 | 11.07 | 12.83 | 15.09 | 20.52 | | 6 | 8.56 | 10.65 | 12.59 | 14.45 | 16.81 | 22.46 | | 7 | 9.80 | 12.02 | 14.07 | 16.01 | 18.48 | 24.32 | | 8 | 11.03 | 13.36 | 15.51 | 17.54 | 20.09 | 26.12 | | 9 | 12.24 | 14.68 | 16.92 | 19.02 | 21.67 | 27.88 | | 10 | 13.44 | 15.99 | 18.31 | 20.48 | 23.21 | 29.59 | | 11 | 14.63 | 17.28 | 19.68 | 21.92 | 24.73 | 31.26 | | 12 | 15.81 | 18.55 | 21.03 | 23.34 | 26.22 | 32.91 | | 13 | 16.99 | 19.81 | 22.36 | 24.74 | 27.69 | 34.53 | | 14 | 18.15 | 21.06 | 23.69 | 26.12 | 29.14 | 36.12 | | 15 | 19.31 | 22.31 | 25.00 | 27.49 | 30.58 | 37.70 | | 16 | 20.47 | 23.54 | 26.30 | 28.85 | 32.00 | 39.25 | | 17 | 21.62 | 24.77 | 27.59 | 30.19 | 33.41 | 40.79 | | 18 | 22.76 | 25.99 | 28.87 | 31.53 | 34.81 | 42.31 | | 19 | 23.90 | 27.20 | 30.14 | 32.85 | 36.19 | 43.82 | | 20 | 25.04 | 28.41 | 31.41 | 34.17 | 37.57 | 45.32 | | 21 | 26.17 | 29.62 | 32.67 | 35.48 | 38.93 | 46.80 | | 22 | 27.30 | 30.81 | 33.92 | 36.78 | 40.29 | 48.27 | | 23 | 28.43 | 32.01 | 35.17 | 38.08 | 41.64 | 49.73 | | 24 | 29.55 | 33.20 | 36.42 | 39.36 | 42.98 | 51.18 | | 25 | 30.68 | 34.38 | 37.65 | 40.65 | 44.31 | 52.62 | | 26 | 31.80 | 35.56 | 38.89 | 41.92 | 45.64 | 54.05 | | 27 | 32.91 | 36.74 | 40.11 | 43.20 | 46.96 | 55.48 | | 28 | 34.03 | 37.92 | 41.34 | 44.46 | 48.28 | 56.89 | | 29 | 35.14 | 39.09 | 42.56 | 45.72 | 49.59 | 58.30 | | 30 | 36.25 | 40.26 | 43.77 | 46.98 | 50.89 | 59.70 | | 40 | 47.27 | 51.81 | 55.76 | 59.34 | 63.69 | 73.40 | | 50 | 58.16 | 63.17 | 67.51 | 71.42 | 76.15 | 86.66 | | 60 | 68.97 | 74.40 | 79.08 | 83.30 | 88.38 | 99.61 | | 70 | 79.72 | 85.53 | 90.53 | 95.02 | 100.43 | 112.32 | The calculated value must be equal to or exceed the critical value in this table for significance to be shown. # Mann-Whitney U test formulae $$U_{a} = n_{a}n_{b} + \frac{n_{a}(n_{a}+1)}{2} - \sum R_{a}$$ $$U_b = n_a n_b + \frac{n_b (n_b + 1)}{2} - \sum R_b$$ # (U is the smaller of U_a and U_b) # Critical values for the Mann-Whitney U test | | | | | | | | | N_{b} | | | | | | | | | |----------------|--------|---------|--------|--------|--------|--------|-----|---------|----|----|-----|-----|-----|-----|-----|-----| | | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | | N _a | | | | | | | | | | | | | | | | | | $p \leq 0.0$ | 5 (one | e-taile | ed), p | ≤ 0.10 |) (two | -taile | ed) | | | | | | | | | | | 5 | 4 | 5 | 6 | 8 | 9 | 11 | 12 | 13 | 15 | 16 | 18 | 19 | 20 | 22 | 23 | 25 | | 6 | 5 | 7 | 8 | 10 | 12 | 14 | 16 | 17 | 19 | 21 | 23 | 25 | 26 | 28 | 30 | 32 | | 7 | 6 | 8 | 11 | 13 | 15 | 17 | 19 | 21 | 24 | 26 | 28 | 30 | 33 | 35 | 37 | 39 | | 8 | 8 | 10 | 13 | 15 | 18 | 20 | 23 | 26 | 28 | 31 | 33 | 36 | 39 | 41 | 44 | 47 | | 9 | 9 | 12 | 15 | 18 | 21 | 24 | 27 | 30 | 33 | 36 | 39 | 42 | 45 | 48 | 51 | 54 | | 10 | 11 | 14 | 17 | 20 | 24 | 27 | 31 | 34 | 37 | 41 | 44 | 48 | 51 | 55 | 58 | 62 | | 11 | 12 | 16 | 19 | 23 | 27 | 31 | 34 | 38 | 42 | 46 | 50 | 54 | 57 | 61 | 65 | 69 | | 12 | 13 | 17 | 21 | 26 | 30 | 34 | 38 | 42 | 47 | 51 | 55 | 60 | 64 | 68 | 72 | 77 | | 13 | 15 | 19 | 24 | 28 | 33 | 37 | 42 | 47 | 51 | 56 | 61 | 65 | 70 | 75 | 80 | 84 | | 14 | 16 | 21 | 26 | 31 | 36 | 41 | 46 | 51 | 56 | 61 | 66 | 71 | 77 | 82 | 87 | 92 | | 15 | 18 | 23 | 28 | 33 | 39 | 44 | 50 | 55 | 61 | 66 | 72 | 77 | 83 | 88 | 94 | 100 | | 16 | 19 | 25 | 30 | 36 | 42 | 48 | 54 | 60 | 65 | 71 | 77 | 83 | 89 | 95 | 101 | 107 | | 17 | 20 | 26 | 33 | 39 | 45 | 51 | 57 | 64 | 70 | 77 | 83 | 89 | 96 | 102 | 109 | 115 | | 18 | 22 | 28 | 35 | 41 | 48 | 55 | 61 | 68 | 75 | 82 | 88 | 95 | 102 | 109 | 116 | 123 | | 19 | 23 | 30 | 37 | 44 | 51 | 58 | 65 | 72 | 80 | 87 | 94 | 101 | 109 | 116 | 123 | 130 | | 20 | 25 | 32 | 39 | 47 | 54 | 62 | 69 | 77 | 84 | 92 | 100 | 107 | 115 | 123 | 130 | 138 | | | | | | | | | | $N_{\rm b}$ | | | | | | | | | |----------------|---------|----------|---------------|----------|----------|----------|----------|----------------|----------|----------------|----------|----------|----------|----------|----------|----------| | | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | | N _a | | | | | | | | | | | | , | | | | | | $p \leq 0.0$ | 1 (on | e-tail | ed), <i>p</i> | ≤ 0.0 | 2 (tw | o-tail | ed) | | | | | | | | | | | 5 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | | 6 | 2 | 3 | 4 | 6 | 7 | 8 | 9 | 11 | 12 | 13 | 15 | 16 | 18 | 19 | 20 | 22 | | 7 | 3 | 4 | 6 | 7 | 9 | 11 | 12 | 14 | 16 | 17 | 19 | 21 | 23 | 24 | 26 | 28 | | 8 | 4 | 6 | 7 | 9 | 11 | 13 | 15 | 17 | 20 | 22 | 24 | 26 | 28 | 30 | 32 | 34 | | 9 | 5 | 7 | 9 | 11 | 14 | 16 | 18 | 21 | 23 | 26 | 28 | 31 | 33 | 36 | 38 | 40 | | 10 | 6 | 8 | 11 | 13 | 16 | 19 | 22 | 24 | 27 | 30 | 33 | 36 | 38 | 41 | 44 | 47 | | 11 | 7 | 9 | 12 | 15 | 18 | 22 | 25 | 28 | 31 | 34 | 37 | 41 | 44 | 47 | 50 | 53 | | 12 | 8 | 11 | 14 | 17 | 21 | 24 | 28 | 31 | 35 | 38 | 42 | 46 | 49 | 53 | 56 | 60 | | 13 | 9 | 12 | 16 | 20 | 23 | 27 | 31 | 35 | 39 | 43 | 47 | 51 | 55 | 59 | 63 | 67 | | 14 | 10 | 13 | 17 | 22 | 26 | 30 | 34 | 38 | 43 | 47 | 51 | 56 | 60 | 65 | 69 | 73 | | 15 | 11 | 15 | 19 | 24 | 28 | 33 | 37 | 42 | 47 | 51 | 56 | 61 | 66 | 70 | 75 | 80 | | 16 | 12 | 16 | 21 | 26 | 31 | 36 | 41 | 46 | 51 | 56 | 61 | 66 | 71 | 76 | 82 | 87 | | 17 | 13 | 18 | 23 | 28 | 33 | 38 | 44 | 49 | 55 | 60 | 66 | 71 | 77 | 82 | 88 | 93 | | 18 | 14 | 19 | 24 | 30 | 36 | 41 | 47 | 53 | 59 | 65 | 70 | 76 | 82 | 88 | 94 | 100 | | 19 | 15 | 20 | 26 | 32 | 38 | 44 | 50 | 56 | 63 | 69 | 75 | 82 | 88 | 94 | 101 | 107 | | 20 | 16 | 22 | 28 | 34 | 40 | 47 | 53 | 60 | 67 | 73 | 80 | 87 | 93 | 100 | 107 | 114 | | | | | | | | | | N _b | | | | | | | | | | | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | | N _a | | | | | | | | | | | | | | | | | | p ≤ 0.0 | 25 (o | ne-ta | iled), | p ≤ 0. | 05 (tv | vo-ta | iled) | | | | | | | | | | | 5 | 2 | 3 | 5 | 6 | 7 | 8 | 9 | 11 | 12 | 13 | 14 | 15 | 17 | 18 | 19 | 20 | | 6 | 3 | 5 | 6 | 8 | 10 | 11 | 13 | 14 | 16 | 17 | 19 | 21 | 22 | 24 | 25 | 27 | | 7 | 5 | 6 | 8 | 10 | 12 | 14 | 16 | 18 | 20 | 22 | 24 | 26 | 28 | 30 | 32 | 34 | | 8 | 6 | 8 | 10 | 13 | 15 | 17 | 19 | 22 | 24 | 26 | 29 | 31 | 34 | 36 | 38 | 41 | | 9 | 7 | 10 | 12 | 15 | 17 | 20 | 23 | 26 | 28 | 31 | 34 | 37 | 39 | 42 | 45 | 48 | | 10 | 8 | 11 | 14 | 17 | 20 | 23 | 26 | 29 | 33 | 36 | 39 | 42 | 45
51 | 48
55 | 52
50 | 55
63 | | 11
12 | 9
11 | 13
14 | 16
18 | 19
22 | 23
26 | 26
29 | 30
33 | 33
37 | 37
41 | 40
45 | 44
49 | 47
53 | 51
57 | 55
61 | 58
65 | 62
69 | | 13 | 12 | 16 | 20 | 24 | 28 | 33 | 35
37 | 37
41 | 45 | 4 5 | 49
54 | 55
59 | 63 | 67 | 72 | 76 | | 14 | 13 | 17 | 22 | 26 | 31 | 36 | 40 | 45 | 50 | 55 | 59 | 64 | 67 | 74 | 72
78 | 83 | | 15 | 14 | 19 | 24 | 29 | 34 | 39 | 44 | 49 | 54 | 59 | 64 | 70 | 75 | 80 | 85 | 90 | | 16 | 15 | 21 | 26 | 31 | 37 | 42 | 47 | 53 | 59 | 64 | 70 | 75 | 81 | 86 | 92 | 98 | | 17 | 17 | 22 | 28 | 34 | 39 | 45 | 51 | 57 | 63 | 67 | 75 | 81 | 87 | 93 | 99 | 105 | | 18 | 18 | 24 | 30 | 36 | 42 | 48 | 55 | 61 | 67 | 74 | 80 | 86 | 93 | 99 | 106 | 112 | | 19 | 19 | 25 | 32 | 38 | 45 | 52 | 58 | 65 | 72 | 78 | 85 | 92 | 99 | 106 | 113 | 119 | | | 20 | 27 | 34 | 41 | 48 | 55 | 62 | 69 | 76 | 83 | 90 | 98 | 105 | 112 | 119 | 127 | | | | | | | | | | $N_{\rm b}$ | | | | | | | | | |----------------|-------|-------|--------|---------------|---------|-------|-------|-------------|----|----|----|----|----|----|----|-----| | | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | | N _a | | | | | | | | | | | | | | | | | | $p \leq 0.0$ | 05 (o | ne-ta | iled), | <i>p</i> ≤ 0. | .01 (tv | wo-ta | iled) | | | | | | | | | | | 5 | 0 | 1 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | | 6 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 9 | 10 | 11 | 12 | 13 | 15 | 16 | 17 | 18 | | 7 | 1 | 3 | 4 | 6 | 7 | 9 | 10 | 12 | 13 | 15 | 16 | 18 | 19 | 21 | 22 | 24 | | 8 | 2 | 4 | 6 | 7 | 9 | 11 | 13 | 15 | 17 | 18 | 20 | 22 | 24 | 26 | 28 | 30 | | 9 | 3 | 5 | 7 | 9 | 11 | 13 | 16 | 18 | 20 | 22 | 24 | 27 | 29 | 31 | 33 | 36 | | 10 | 4 | 6 | 9 | 11 | 13 | 16 | 18 | 21 | 24 | 26 | 29 | 31 | 34 | 37 | 39 | 42 | | 11 | 5 | 7 | 10 | 13 | 16 | 18 | 21 | 24 | 27 | 30 | 33 | 36 | 39 | 42 | 45 | 48 | | 12 | 6 | 9 | 12 | 15 | 18 | 21 | 24 | 27 | 31 | 34 | 37 | 41 | 44 | 47 | 51 | 54 | | 13 | 7 | 10 | 13 | 17 | 20 | 24 | 27 | 31 | 34 | 38 | 42 | 45 | 49 | 53 | 56 | 60 | | 14 | 7 | 11 | 15 | 18 | 22 | 26 | 30 | 34 | 38 | 42 | 46 | 50 | 54 | 58 | 63 | 67 | | 15 | 8 | 12 | 16 | 20 | 24 | 29 | 33 | 37 | 42 | 46 | 51 | 55 | 60 | 64 | 69 | 73 | | 16 | 9 | 13 | 18 | 22 | 27 | 31 | 36 | 41 | 45 | 50 | 55 | 60 | 65 | 70 | 74 | 79 | | 17 | 10 | 15 | 19 | 24 | 29 | 34 | 39 | 44 | 49 | 54 | 60 | 65 | 70 | 75 | 81 | 86 | | 18 | 11 | 16 | 21 | 26 | 31 | 37 | 42 | 47 | 53 | 58 | 64 | 70 | 75 | 81 | 87 | 92 | | 19 | 12 | 17 | 22 | 28 | 33 | 39 | 45 | 51 | 56 | 63 | 69 | 74 | 81 | 87 | 93 | 99 | | 20 | 13 | 18 | 24 | 30 | 36 | 42 | 48 | 54 | 60 | 67 | 73 | 79 | 86 | 92 | 99 | 105 | The calculated value must be equal to or less than the critical value in this table for significance to be shown. #### **Wilcoxon Signed Ranks test process** - Calculate the difference between two scores by taking one from the other - Rank the differences giving the smallest difference Rank 1 Note: do not rank any differences of 0 and when adding the number of scores, do not count those with a difference of 0, and ignore the signs when calculating the difference - Add up the ranks for positive differences - Add up the ranks for negative differences - T is the figure that is the smallest when the ranks are totalled (may be positive or negative) - N is the number of scores left, ignore those with 0 difference #### **Critical values for the Wilcoxon Signed Ranks test** #### Level of significance for a one-tailed test | 0.03 | 0.025 | 0.01 | |---------------|--|---| | Level of sign | ificance for a tv | vo-tailed test | | 0.1 | 0.05 | 0.02 | | 0 | _ | _ | | 2 | 0 | - | | 3 | 2 | 0 | | 5 | 3 | 1 | | 8 | 5 | 3 | | 11 | 8 | 5 | | 13 | 10 | 7 | | 17 | 13 | 9 | | | 0.1
0
2
3
5
8
11
13 | Level of significance for a two 0.1 0.05 0 - 2 0 3 2 5 3 8 5 11 8 13 10 | The calculated value must be equal to or less than the critical value in this table for significance to be shown. # Answer ALL questions. Write your answers in the spaces provided. # **SECTION A** # **Social Psychology** | (a) Describe the sample of participants used in the study by Sherif et al. (1954/1961). | (2) | |---|---| | | | | | | | | | | | | | | | | (b) In stage three of the experiment, Sherif et al. (1954/1961) attempted to reduce inter-group conflict. | | | Describe one way that Sherif et al. (1954/1961) attempted to reduce inter-group conflict. | | | | (2) | | | | | | | | | | | | | | | | | | inter-group conflict. Describe one way that Sherif et al. (1954/1961) attempted to reduce inter-group | | (c) | Explain one weakness of the study by Sherif et al. (1954/1961) in terms of reliability. | (2) | |-----|--|--------| | | | | | | | | | | | | | | | | | | (Total for Question 1 = 6 | marks) | 2 Jack wanted to investigate whether males were prejudiced towards females who worked in stereotypical male professions, such as building work and lorry driving. He asked five males to answer a questionnaire about gender roles. Participant responses were scored out of 10 for gender prejudice, with 10 indicating a very strong gender prejudice, and 0 indicating little or no gender prejudice. Jack's results are shown in **Table 1**. | Participant | Gender
prejudice
score
(out of 10) | |-------------|---| | A | 10 | | В | 8 | | С | 9 | | D | 4 | | E | 6 | Table 1 (a) Calculate the standard deviation for the gender prejudice score using the data in **Table 1**. Show your working and give your answer to two decimal places. (4) #### **SPACE FOR CALCULATIONS** | Standard | deviation | |----------|-----------| | | | (b) Calculate the range for the gender prejudice score. (1) #### **SPACE FOR CALCULATIONS** Range (Total for Question 2 = 5 marks) | 3 | Evaluate agency theory as an explanation of obedience. | | | |---|--|-----|--| | | | (8) | **TOTAL FOR SECTION A = 19 MARKS** (Total for Question 3 = 8 marks) #### **SECTION B** # **Cognitive Psychology** - In your studies of cognitive psychology, you will have completed a practical investigation. - (a) State the fully operationalised independent variable (IV) and the fully operationalised dependent variable (DV) for your cognitive psychology practical investigation. | | - 3 | | |----|-----|-----| | ١. | 4 | | | A. | | - 1 | | Independent variable (IV) | |---------------------------| | | | | | | | Dependent variable (DV) | | | | | | (b) Explain two strengths of your cognitive psychology practical inves | stigation. (4) | |---|----------------------| (c) Explain one improvement you could have made to your cognitive practical investigation. | psychology | | practical investigation. | (2) | | | | | | | | | | | | | | | | | /T-4-1 f- " O- | estion 4 = 8 marks) | | | LESTION 4 = X MARKSI | | 5 | Milo and Betty had watched a film together and were talking to their friends about the film. Milo described a scene where the main character had travelled by train to a big city where there were yellow taxis and really tall buildings. Betty said that the taxis were black, not yellow. | | |---|--|-----| | | Betty also described how the main character had arrived at a train station but said it was in a town. She said that the main character had a large suitcase, but Milo claimed there was no suitcase, just a bag. Betty disagreed with Milo, she said because the main character was staying in the town for several weeks, it must have been a suitcase. | | | | Discuss, using reconstructive memory (Bartlett, 1932), including schema theory, Milo's and Betty's recall of the film. | | | | | (8) | (Total for Question 5 = 8 marks) | | |----------------------------------|--| **TOTAL FOR SECTION B = 16 MARKS** (b) #### **SECTION C** # **Biological Psychology** - Amelia is using a correlational research method to investigate whether there is a relationship between recreational drug use and aggression. She intends to study individuals who have been arrested for violent offences. - (a) Describe how Amelia could use a random sampling technique to gather a sample of 30 participants for her correlational research. (2) | Explain one weakness of Amelia using a correlational research method for her | |--| | investigation about recreational drug use and aggression. | (2) (Total for Question 6 = 4 marks) | 7 | Explain two strengths of brain structure as an explanation of aggression. | |---|--| | 1 | | | | | | | | | | | | | | | 2 | | | | | | | | | | | | | | | | (Total for Question 7 = 4 marks) | (8) |
 | |----------------------------------|
 | (T-4-14-10 d 0 0 1 | | (Total for Question 8 = 8 marks) | | | | TOTAL FOR SECTION $C = 16$ MARKS | #### **SECTION D** #### **Learning Theories** - **9** Archie conducted an observation to see whether boys are more likely to play with gender stereotypical toys than girls. He visited a pre-school where he observed children aged between three and four years old playing with toys. - (a) Describe how Archie may have gained informed consent to conduct his observation. Archie recorded the first choice of toy that each boy and girl at the pre-school chose to play with. **Table 2** shows the number of boys and girls that Archie recorded as playing with a gender stereotypical boys' toy or gender stereotypical girls' toy. | Gender of child | Type of toy | played with | |-----------------|-------------------------|--------------------------| | | Stereotypical boys' toy | Stereotypical girls' toy | | Boys | 8 | 12 | | Girls | 10 | 11 | Table 2 (b) Complete **Table 3** to calculate the chi-squared test for Archie's observation. You must give your answer to **two** decimal places. (4) | | | Observed | Expected | О-Е | (O-E) ² | (O-E) ² /E | |-------|----------------------------|----------|----------|-----|--------------------|-----------------------| | Boys | Stereotypical
boys' toy | 8 | 8.78 | | | | | | Stereotypical girls' toy | 12 | 11.22 | | | | | Girls | Stereotypical boys' toy | 10 | 9.22 | | | | | | Stereotypical girls' toy | 11 | 11.78 | | | | Chi-squared = # Table 3 SPACE FOR CALCULATIONS Chi-squared (χ²) (c) Archie had a one-tailed (directional) hypothesis with df=1 and used p=0.05 as his level of significance. Determine whether there is a significant difference between boys and girls in the choice of gender stereotypical toys. (1) (Total for Question 9 = 7 marks) | 10 | Marigold is a teacher at a primary school. She is concerned about the behaviour of a nine-year-old boy in her class. The boy often refuses to sit on a chair at his desk, instead he sits on the floor next to Marigold. When he is asked to sit at his desk, he leaves the classroom and sits in the corridor. | |-------|---| | | Marigold decides to use behaviour shaping. She hopes to encourage him to first sit on a chair next to her, and then eventually shape his behaviour until he sits on a chair at his desk. | | | Explain one strength and one weakness of Marigold using behaviour shaping to encourage the boy to sit on a chair at his desk. | | | Strength | | | | | | | | ••••• | | | | | | | | | | Weakness | | | | | | | | | | | | | | | | | | (Total for Question 10 = 4 marks) | | 11 | Dora has a phobia of boxes. When she was young, her parents bought her a toy in a box. Every time she lifted the lid of the box, a clown jumped out and scared her. Since then, she has been unable to open boxes and is frightened about what could be inside them. | | |----|---|-----| | | Dora's family members open all boxes for her and reassure her that there is nothing dangerous inside each time. Dora regularly becomes upset when a box is delivered to the house. Her family members calm her down by making her a cup of tea and sitting with her until she feels safe. | | | | Discuss how learning theories can explain the acquisition and maintenance of Dora's phobia of boxes. | | | | | (8) |
 | |-----------------------------------| | | | | | | |
 | | | | | | | |
 | | (Total for Question 11 = 8 marks) | | | **TOTAL FOR SECTION D = 19 MARKS** # **SECTION E** | Issues and Debates | | | |--|-----|--| | 12 Assess the ethical issues involved when using animals for research in learning theories. | | | | | (8) |
 | |-----------------------------------| | | | | | | | | | | | | | | |
 | | | |
 | | | | | |
 |
 | | (Total for Question 12 = 8 marks) | | 13 | Marco has been suffering with memory processing issues that cause him to become confused. He is not always able to understand situations and becomes frustrated with the people around him. | า | |-------|---|------| | | Marco was arrested on two previous occasions for aggressive behaviour. He was also once found by police in a car park at 3am unable to find his way home. | | | | Recently Marco got into a fight with a man who he thought was laughing at him. When the police arrived, the man said he was not laughing at Marco, but Marco told the police that the man was lying. The police arrested Marco. When they interviewed him, Marco struggled to remember exactly what had happened. | | | | The police requested a doctor to examine Marco while he was in custody. The doctor decided to refer him for a brain scan for his memory processing issues. | | | | Evaluate how well knowledge from cognitive psychology could explain Marco's situation. | | | | | (12) | ••••• |
 | |------|
 | |------------------------------------| (Total for Question 13 = 12 marks) | | | TOTAL FOR SECTION E = 20 MARKS TOTAL FOR PAPER = 90 MARKS #### **BLANK PAGE** # **BLANK PAGE**