
Mark Scheme (Results)

June 2022

Pearson Edexcel GCSE In
Computer Science (1CP2/02)
Paper 2: Application of Computational
Thinking

Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications are awarded by Pearson, the UK’s largest awarding body.
We provide a wide range of qualifications including academic, vocational, occupational
and specific programmes for employers. For further information visit our qualifications
websites at www.edexcel.com or www.btec.co.uk. Alternatively, you can get in touch with
us using the details on our contact us page at www.edexcel.com/contactus.

Pearson: helping people progress, everywhere

Pearson aspires to be the world’s leading learning company. Our aim is to help everyone progress
in their lives through education. We believe in every kind of learning, for all kinds of people,
wherever they are in the world. We’ve been involved in education for over 150 years, and by
working across 70 countries, in 100 languages, we have built an international reputation for our
commitment to high standards and raising achievement through innovation in education. Find out
more about how we can help you and your students at: www.pearson.com/uk

June 2022
Publications Code 1CP2_02_rms_20220825
All the material in this publication is copyright
© Pearson Education Ltd 2022

http://www.edexcel.com/
http://www.btec.co.uk/
http://www.edexcel.com/contactus
http://www.pearson.com/uk

General Marking Guidance

• All candidates must receive the same treatment. Examiners
must mark the first candidate in exactly the same way as they
mark the last.

• Mark schemes should be applied positively. Candidates must
be rewarded for what they have shown they can do rather than
penalised for omissions.

• Examiners should mark according to the mark scheme not
according to their perception of where the grade boundaries
may lie.

• There is no ceiling on achievement. All marks on the mark
scheme should be used appropriately.

• All the marks on the mark scheme are designed to be awarded.
Examiners should always award full marks if deserved, i.e. if
the answer matches the mark scheme. Examiners should also
be prepared to award zero marks if the candidate’s response is
not worthy of credit according to the mark scheme.

• Where some judgement is required, mark schemes will provide
the principles by which marks will be awarded and
exemplification may be limited.

• When examiners are in doubt regarding the application of the
mark scheme to a candidate’s response, the team leader must
be consulted.

• Crossed out work should be marked UNLESS the candidate has
replaced it with an alternative response.

Question
number

MP Appx.
Line

Answer Additional guidance Mark

1 Award marks as shown.

(10)

1.1 8 New line added to create integer and setting it to 0 (1)
• num = 0
• num = int () num = 0

1.2 15 Use of input (<prompt>) to display a prompt (1) • Allow input(“”)
1.3 15 Conversion of string input to integer using int () (1)

1.4 20 Use of correct variable and relational operator for
lower bound (1)

• num > 4
• num >= 5
• 5 <= num
• Allow num > 5
• Allow =<

1.5 20 Use of correct variable and relational operator for
upper bound (1)

• num < 31
• num <= 30
• 30 >= num
• Allow num < 30
• Allow =>

1.6 20 Use of AND to join the range checks (1)
• Allow the use of OR to correctly exclude

invalid inputs. Review mp1.4 and 1.5 to
check relational operators matches logic.

1.7 23 Use of addition to convert to decimal code (1)
• 60 + num
• decimalCode + num
• Allow + as part of compound operator,

1.8 23 Use of assignment to set value of decimalCode (=) (1) • Allow = as part of compound operator,
independent of mp1.7

1.9 26 String concatenation used to join parts of string
output (1)

1.10 29 Invalid input message displayed is fit for purpose (1)

Question
number

MP Appx.
Line

Answer Additional guidance Mark

2 Award marks as shown.

(10)

 2.1 19 Any comment with the word “string” in it near the turtle.mode ()
call (1)

 2.2 23 Name error – correct spelling of constant HEIGHT (1)

 2.3 28 Attribute error – Requires a capital letter <turtle>.Turtle () (1)

 2.4 36 Type error – Remove argument to <turtle>.pendown () (1)
 2.5 42 Logic error – Move vertical grid line back to origin (1)

theTurtle.setpos (0, 200)

 2.6 48 Logic error – Correct length of vertical grid line (1)
theTurtle.forward (400)

 2.7 56 Logic error – Correct heading for starting point of square (1)
theTurtle.setheading (90)

 2.8 68 Control pen size with a constant (1)
theTurtle.pensize (BIG)

• Do not allow mark for first added
line that uses the default ‘turtle’
rather than ‘theTurtle’, even if the
rest of the line is correct. Allow
follow through.

 2.9 71 Set the pen colour to “gold” (1)
theTurtle.pencolor ("gold")

 2.10 78 Hide the turtle (1)
theTurtle.hideturtle ()

Question
number

MP Appx.
Line

Answer Additional guidance Mark

3 Award marks as shown.

(10)

 3.1 5 Import the math library (1) • import math
• from math import pi
• from math import pow

 3.2 18 Initialise ‘circleArea’ to a real number (1)

 3.3 27 Correct translation of diameter calculation and assignment to
‘diameter’ (1)

 3.4 31 Use of relational operator and two correct variables to construct a
test for invalid input (1)

• diameter > side
• diameter >= side
• Allow comparisons between areas of

the circle and areas of the square
(circleArea > squareArea)

 3.5 35 Calculation of the area of the square (1) • side * side
• side ** 2
• math.pow (side, 2)

 3.6 39 Correct translation of exponentiation (**2) for circle area, even if
remainder of formula is incorrect (1)

• radius ** 2
• math.pow (radius, 2)

 3.7 42 Subtraction used to calculate the positive difference between the
area of the square and the area of the circle (1)

• excessArea = squareArea -
circleArea

 Levels-based mark scheme to a maximum of 3, from:

 3.8
3.9
3.10

 Functionality (3)

Execute with test data given in question paper.

Considerations for levels-based mark
scheme:
• [6.1.2] Translates without error,

even if reduced functionality
• [6.1.6] Functions correctly to

produce the required output
• [6.6.1] Use of constant (math.pi) in

preference to estimated value
(3.14…)

Functionality (levels-based mark scheme)

0 1 2 3 Max.

N
o

re
w

ar
da

bl
e

m
at

er
ia

l

Functionality (when the code
is run)
• The component parts of the

program are incorrect or
incomplete, providing a program of
limited functionality that meets
some of the given requirements.

• Program outputs are of limited
accuracy and/or provide limited
information.

• Program responds predictably to
some of the anticipated input.

• Solution is not robust and may
crash on anticipated or provided
input.

Functionality (when the code
is run)
• The component parts of the

program are complete, providing a
functional program that meets
most of the stated requirements.

• Program outputs are mostly
accurate and informative.

• Program responds predictably to
most of the anticipated input.

• Solution may not be robust within
the constraints of the problem.

Functionality (when the code
is run)
• The component parts of the

program are complete, providing a
functional program that fully meets
the given requirements.

• Program outputs are accurate,
informative, and suitable for the
user.

• Program responds predictably to
anticipated input.

• Solution is robust within the
constraints of the problem.

3

Question
number

MP Appx.
Line

Answer Additional guidance Mark

4 Award marks as shown. • Award sequence only.
• Ignore intervening lines.
• Ignore changes made to

provided lines.
• Do not award same

sequence in supplied file, if
no lines are moved in that
subsection

(15)

 Subprogram • If no lines are moved, not
changing the sequence, then
award no marks in this
subsection

 4.1
4.2

13 Initialisation of variables before calculations inside the subprogram, all
together (One mark for any two, up to a maximum of 2)

multiplier, total, digit, value (2)

 4.3 18 Iteration (for loop) placed at highest level inside subprogram, after
initialisation of local variables (1)

 Order of calculations maintained: • Order of lines must be digit,
followed by value, followed
by total.

• Multiplier must be after
value.

 4.4 19 digit must be the first of the sequence (1)
 4.5 20 value (1)
 4.6 21 total (1)
 4.7 22 multiplier (1)
 4.8 24 Return statement is last line in subprogram (1)
 Main Program • If no lines are moved, not

changing the sequence, then
award no marks in this
subsection

 4.9 31 User input accepted as first operation in main program (1)
 4.10 32 Repetition (while loop) after any input (1)

 4.11 33 Call to ‘binaryLoop’ subprogram inside repetition (while loop) (1)
 4.12 34 Output of result follows call to subprogram (1)
 4.13 35 User input accepted as last operation in main program, inside loop (1)
 Additional
 4.14 Functions for any sequence of 1s and 0s and exits on empty string (1) • Execute with test data given

in question paper
 4.15 Adherence to accurate indentation (1)

Question
number

MP Appx.
Line

Answer Additional guidance Mark

5 Award marks as shown.

(15)

 Preparation
 5.1 File opened for writing only (1)

 5.2 Constant used as file name to open (1)

 Processing all items in array

 5.3 A loop to process every item in the given data
structure (1)

• for or while

 Controlling width of data output to file

 5.4 Mechanism for controlling seven items (1) • if or for

 5.5 Constant used to compare against count for column
control (1)

 Formatting of output line

 5.6 Line feed added to each line of output (1)

 5.7 Comma added to each output item, except the last on
each line (1)

 Exiting

 5.8 File closed before exiting program (1) • Award if using ‘with open’

 Additional

 5.9 Use of techniques to ensure code is readable (1)

 Levels-based mark scheme to a maximum of 6, from:
 5.10

5.11
5.12

 Solution design (3) Considerations for levels-based mark scheme:
• [6.1.2] Translates without error, even if

reduced functionality
• [6.1.6] Format of file matches requirement of

seven columns per line (addition of line feed).
• [6.3.3] Output file contains string values on

separate lines

 5.13
5.14
5.15

 Functionality (3)

• [6.2.2] Use of ‘for’ loop in preference to a
‘while’ loop for iteration across an entire data
structure or across the seven weights

• [6.3.3] Conversion of integers in data
structures to strings for output file

• [6.3.3] Use of string concatenation to join
items for output line

Solution design (levels-based mark scheme)

0 1 2 3 Max.

N
o

re
w

ar
da

bl
e

m
at

er
ia

l

• There has been little attempt to
decompose the problem.

• Some of the component parts of
the problem can be seen in the
solution, although this will not be
complete.

• Some parts of the logic are clear
and appropriate to the problem.

• The use of variables and data
structures, appropriate to the
problem, is limited.

• The choice of programming
constructs, appropriate to the
problem, is limited.

• There has been some attempt to
decompose the problem.

• Most of the component parts of the
problem can be seen in the
solution.

• Most parts of the logic are clear
and appropriate to the problem.

• The use of variables and data
structures is mostly appropriate.

• The choice of programming
constructs is mostly appropriate to
the problem.

• The problem has been decomposed
clearly into component parts.

• The component parts of the
problem can be seen clearly in the
solution.

• The logic is clear and appropriate
to the problem.

• The choice of variables and data
structures is appropriate to the
problem.

• The choice of programming
constructs is accurate and
appropriate to the problem.

3

Functionality (levels-based mark scheme)

0 1 2 3 Max.
N

o
re

w
ar

da
bl

e
m

at
er

ia
l

Functionality (when the code
is run)
• The component parts of the

program are incorrect or
incomplete, providing a program of
limited functionality that meets
some of the given requirements.

• Program outputs are of limited
accuracy and/or provide limited
information.

• Program responds predictably to
some of the anticipated input.

• Solution is not robust and may
crash on anticipated or provided
input.

Functionality (when the code
is run)
• The component parts of the

program are complete, providing a
functional program that meets
most of the stated requirements.

• Program outputs are mostly
accurate and informative.

• Program responds predictably to
most of the anticipated input.

• Solution may not be robust within
the constraints of the problem.

Functionality (when the code
is run)
• The component parts of the

program are complete, providing a
functional program that fully meets
the given requirements.

• Program outputs are accurate,
informative, and suitable for the
user.

• Program responds predictably to
anticipated input.

• Solution is robust within the
constraints of the problem.

3

Question
number

MP Appx.
Line

Answer Additional guidance Mark

6 Award marks as shown.

(15)

 Input
 6.1 Convert input string to uppercase to match data given in data

structure (1)

• <string>.upper()

 Linear search and terminating conditions

 6.2 Linear search uses length of list for upper boundary of loop (1)

 6.3 Mechanisms to identify when item is found in the list (1) • Boolean variables
• Appropriate ordering of if/elif/else

 6.4 Mechanism to identify when item location is passed over in
search (1)

• Boolean variables
• Appropriate ordering of if/elif/else

 Identifying suggested word

 6.5 A method for tracking the suggested word is used (1) • index, whole record

 6.6 Use of two-dimensional indexing (1)

 Levels-based mark scheme to a maximum of 9, from:
 6.7

6.8
6.9

 Solution design (3)

Considerations for levels-based mark
scheme:

• [6.1.1] Use decomposition to solve
problem and create solution

• [6.2.2] Use of ‘while’ loop to
traverse data structure, rather than
a ‘for’ loop

• [6.3.1] Choice of variable data
types to hold suggested word is
appropriate, i.e. a list rather than a
string and an integer

• [6.1.2] Write in a high-level

 6.10
6.11
6.12

 Good programming practices (3)

 6.13
6.14
6.15

 Functionality (3)

language

• [6.1.4] Program code is laid out in
clear sections; white space is used
to show different parts of the
solution/functionality

• [6.1.4] Variable names are
meaningful; comments are provided
and are helpful in explaining logic

• [6.4.1] Printed outputs are fit for
purpose

• [6.1.6] Functions correctly for all
anticipated inputs in the constraints
of the problem definition

• [6.1.6] Functions correctly if a word
greater than “ZA” is entered
(special case)

Test Data:

Input Expected output
no
AA
ZA

NO is worth 2 points.
AA is worth 2 points.
ZA is worth 11 points.

MU MU is worth 4 points.
nz / NZ NZ is not in the list.

Use OD worth 3 points.
zh / ZH ZH is not in the list.

Use ZA worth 11 points.

Solution design (levels-based mark scheme)

0 1 2 3 Max.
N

o
re

w
ar

da
bl

e
m

at
er

ia
l

• There has been little attempt to
decompose the problem.

• Some of the component parts of
the problem can be seen in the
solution, although this will not be
complete.

• Some parts of the logic are clear
and appropriate to the problem.

• The use of variables and data
structures, appropriate to the
problem, is limited.

• The choice of programming
constructs, appropriate to the
problem, is limited.

• There has been some attempt to
decompose the problem.

• Most of the component parts of the
problem can be seen in the
solution.

• Most parts of the logic are clear
and appropriate to the problem.

• The use of variables and data
structures is mostly appropriate.

• The choice of programming
constructs is mostly appropriate to
the problem.

• The problem has been decomposed
clearly into component parts.

• The component parts of the
problem can be seen clearly in the
solution.

• The logic is clear and appropriate
to the problem.

• The choice of variables and data
structures is appropriate to the
problem.

• The choice of programming
constructs is accurate and
appropriate to the problem.

3

Good programming practices (levels-based mark scheme)

0 1 2 3 Max.
N

o
re

w
ar

da
bl

e
m

at
er

ia
l

• There has been little attempt to lay
out the code into identifiable
sections to aid readability.

• Some use of meaningful variable
names.

• Limited or excessive commenting.
• Parts of the code are clear, with

limited use of appropriate spacing
and indentation.

• There has been some attempt to
lay out the code to aid readability,
although sections may still be
mixed.

• Uses mostly meaningful variable
names.

• Some use of appropriate
commenting, although may be
excessive.

• Code is mostly clear, with some use
of appropriate white space to aid
readability.

• Layout of code is effective in
separating sections, e.g. putting all
variables together, putting all
subprograms together as
appropriate.

• Meaningful variable names and
subprogram interfaces are used
where appropriate.

• Effective commenting is used to
explain logic of code blocks.

• Code is clear, with good use of
white space to aid readability.

3

Functionality (levels-based mark scheme)

0 1 2 3 Max.
N

o
re

w
ar

da
bl

e
m

at
er

ia
l

Functionality (when the code
is run)
• The component parts of the

program are incorrect or
incomplete, providing a program of
limited functionality that meets
some of the given requirements.

• Program outputs are of limited
accuracy and/or provide limited
information.

• Program responds predictably to
some of the anticipated input.

• Solution is not robust and may
crash on anticipated or provided
input.

Functionality (when the code
is run)
• The component parts of the

program are complete, providing a
functional program that meets
most of the stated requirements.

• Program outputs are mostly
accurate and informative.

• Program responds predictably to
most of the anticipated input.

• Solution may not be robust within
the constraints of the problem.

Functionality (when the code
is run)
• The component parts of the

program are complete, providing a
functional program that fully meets
the given requirements.

• Program outputs are accurate,
informative, and suitable for the
user.

• Program responds predictably to
anticipated input.

• Solution is robust within the
constraints of the problem.

3

