GCSE (9-1)

Design and Technology

J310/01: Principles of design and technology

General Certificate of Secondary Education

Mark Scheme for Autumn 2021

OCR (Oxford Cambridge and RSA) is a leading UK awarding body, providing a wide range of qualifications to meet the needs of candidates of all ages and abilities. OCR qualifications include AS/A Levels, Diplomas, GCSEs, Cambridge Nationals, Cambridge Technicals, Functional Skills, Key Skills, Entry Level qualifications, NVQs and vocational qualifications in areas such as IT, business, languages, teaching/training, administration and secretarial skills.

It is also responsible for developing new specifications to meet national requirements and the needs of students and teachers. OCR is a not-for-profit organisation; any surplus made is invested back into the establishment to help towards the development of qualifications and support, which keep pace with the changing needs of today's society.

This mark scheme is published as an aid to teachers and students, to indicate the requirements of the examination. It shows the basis on which marks were awarded by examiners. It does not indicate the details of the discussions which took place at an examiners' meeting before marking commenced.

All examiners are instructed that alternative correct answers and unexpected approaches in candidates' scripts must be given marks that fairly reflect the relevant knowledge and skills demonstrated.

Mark schemes should be read in conjunction with the published question papers and the report on the examination.
© OCR 2021

1. Annotations

Annotation	
BP	Blank page
$\boldsymbol{\iota}$	Point where mark is awarded
L1	Level one response
L2	Level two response
L3	Level three response
ECF	Error carried forward
REP	Repetition
SEEN	Noted, but no credit given
PD	Poor diagram offering unclear response

2. Subject Specific Marking Instructions

Your first task as an Examiner is to become thoroughly familiar with the material on which the examination depends. This material includes:

- the specification, especially the assessment objectives
- the question paper
- the mark scheme.

You should ensure that you have copies of these materials.
You should ensure also that you are familiar with the administrative procedures related to the marking process. These are set out in the OCR booklet Instructions for Examiners. If you are examining for the first time, please read carefully Appendix 5 Introduction to Script Marking: Notes for New Examiners.

Please ask for help or guidance whenever you need it. Your first point of contact is your Team Leader.

LEVELS OF RESPONSE QUESTIONS (also refer to point 10 above):

The indicative content indicates the expected parameters for candidates' answers but be prepared to recognise and credit unexpected approaches where they show relevance.

Using 'best-fit', decide first which set of level descriptors best describes the overall quality of the answer. Once the level is located, adjust the mark concentrating on features of the answer which make it stronger or weaker following the guidelines for refinement.

Highest mark: If clear evidence of all the qualities in the level descriptors is shown, the HIGHEST mark should be awarded.
Lowest mark: If the answer shows the candidate to be borderline (i.e. they have achieved all the qualities of the levels below and show limited evidence of meeting the criteria of the level in question) the LOWEST mark should be awarded.
Middle mark: This mark should be used for candidates who are secure in the level. They are not 'borderline' but they have only achieved some of the qualities in the level descriptors.

Be prepared to use the full range of marks. Do not reserve (e.g.) highest level marks 'in case' something turns up of a quality you have not yet seen. If an answer gives clear evidence of the qualities described in the level descriptors, reward appropriately.

Assessment Objectives

AO3: Analyse and evaluate -

- design decisions and outcomes, including for prototypes made by themselves and others
- wider issues in design and technology

AO4 Demonstrate and apply knowledge and understanding of -

- technical principles
- design and making principles

Question	AO3	AO4	Question	AO3	AO4
1a		3	4ai		2
1b		1	4aii		1
1c		1	4b		2
1d	3	3	4ci		1
1e		1	4cii		2
1f*	6	2	5 a		9
2		18	5 bi		2
3ai		4	5 bii		2
3aii	1		5 ci		6
3aiii	1		5 cii	2	4
3bi		4	6 a		4
3bii	2		6 b	5	3
3ci		1			
3cii		4			

Question ${ }^{\text {a }}$ Answer			Mark	Guidance
1	(a)	Any three from e.g.: - Can be cut, folded and scored easily - Can be printed on - Inexpensive compared to other materials - Readily available material - Can be recycled after use - Rigid when formed into a box to protect chocolates Award credit for any other appropriate reason	3	Reasons must be appropriate for the context in the question: box for the chocolates made of cardboard Do not accept generic/vague answers such as cheap, strong, light, sustainable without qualification. Be careful not to award repeat answers.
1	(b)	Any one from: PET, ABS, PVC, PS, LDPE, acrylic, TPE Accept any other named thermo polymer	1	Do not accept thermosetting polymers e.g. silicone, polyester resin Accept full name or abbreviation.
1	(c)	Any one from: Copper, tin, Silver Accept any other named non-ferrous metal other than aluminium.	1	Do not accept Aluminium as this is given in the question.
1	(d)	Any three ways explained e.g.: Reduce amount of materials (1) used in the packaging to lessen the use of raw materials (1) Re-design the packaging (1) so that refills can be bought rather than disposing of the box (1) Use recycled material/pulp (1) to make the packaging reducing the need for virgin material (1)	6	Answers must be appropriate to the packaging of the chocolates being made more sustainable during designing or manufacturing - not after use. 1 mark for identifying a suitable point 1 mark for explaining it. Do not accept answers relating Fairtrade as this is a social \& economic issue.

		Don't use single use polymers (1) which can pollute the sea/rivers/landscape/wildlife (1) Use alternative energy in manufacturing, such as wind/solar/tidal power (1) to reduce the production of harmful emissions (1) Award credit for any other appropriate reason		
$\mathbf{1}$	(e)	A biopolymer is a polymer created from a renewable / natural resource / accept a named example e.g. plant, starch or seaweed.	$\mathbf{1}$	Do not accept 'sustainable material' or 'good for the environment' without qualification.

| | | Recycling schemes for glass and polymer
 bottles e.g. in Norway for polymers bottle so
 bottles are returned and can be recycled |
| :--- | :--- | :--- | :--- | :--- |

Any examples given may not be appropriate. Any attempt at analysis or evaluation of the choices made will be limited and not be worthy of credit.
The information has some relevance and is presented with limited structure or detail.
The information is supported by limited evidence

Level 0 (0 marks)

No response or no response worthy of credit.

Question			Answer	Mark	Guidance
2	(a)	(i)	$\begin{aligned} & 500 \times 1370=685000[1] \mathrm{mm}^{2}[1] \\ & \text { OR } \\ & 0.5 \times 1.37=0.685[1] \mathrm{m}^{2}[1] \\ & \text { OR } \\ & 50 \times 137=6850[1] \mathrm{cm}^{2}[1] \end{aligned}$	2	1 mark for a correct calculation of the area 1 mark for the correct unit for their given answer
2	(a)	(ii)	$50 \mathrm{~m}=50000 \mathrm{~mm}[1]$ 50000 mm * (length of fabric) / 1370mm (length of deck chair fabric) $=36.49$ deck chair seats, rounded down to 36 seats [1] Fabric is 1 m wide so two deck chair seats can be cut from each 1370 mm length $36 \times 2=72$	3	Award $\mathbf{3}$ marks if 72 seen If 72 not seen award working as shown (soi) Special cases: If 72.92 seen (no rounding applied) award 2 marks If 74 seen (rounded up) award 2 marks
2	(a)	(iii)	For one mark e.g.: The under and over/ warp and weft construction of the fibres (1) reinforces thread.	1	Do not award 'strong' on its own as this is given in the question
2	(b)		Need 100 lengths of each piece 1250, 890, 590. 1800-1250 = 550 (no use for leftover timber, so the two 1250 lengths need 2 standard lengths): Need 100 (1250) pieces from 100 lengths [1] $890 * 2=1780 \mathrm{~mm}$ (1 length). Need 100 (890) pieces from 50 lengths [1] 590 *2 $=1180 \mathrm{~mm}$ (1 length) this leaves enough for another 590. Need 100 (590) pieces from 34 lengths [1] Total 184 lengths $(100+50+34)$	4	Award 4 marks if 184 seen If 184 not seen award working as shown (soi) Special cases: if answer is not the minimum no. of lengths award 2 marks e.g.: $890+590=1480$ (1 length) $\times 2=2$ lengths, then you would get $4 * 50=200$ lengths. Award 1 mark for: Total length of timber for one chair (or one side) $\times 50$ chairs, then divided by 1.8
2	(c)	(i)	$50 \times 4=200$ bolts needed [1]	2	Award 2 marks if 399.80 seen

			$200 / 10=20=20 \times 19.99[1]=399.80$		Award 1 mark if 200 or 20 packets or 20×19.99 seen but final answer is incorrect
2	(c)	(ii)	$\begin{aligned} & 400 \times 19.99=7996,[1] \\ & 7996-5997=£ 1999,[1] \\ & 1999 / 7996 \times 100=\mathbf{2 5 \%} \end{aligned}$	3	Award $\mathbf{3}$ marks if $\mathbf{2 5}$ seen If 25 not seen award working as shown (soi)
2	(d)		$360^{\circ} / 900$ sales $=0.4^{\circ}$ per sale (Winter $45 \times 0.4=18^{\circ}$ answer given) Autumn $90 \times 0.4=36^{\circ}$ Spring $315 \times 0.4=126^{\circ}$ Summer $450 \times 0.4=180^{\circ}$	3	Size of segments: Award 2 marks if size of all segments correct by eye or award 1 mark if only one segment correct by eye Look for: Autumn - double the size Winter, and Summer - half of circle Labels/Key: All labels/key correct [1]

3	(a)	i				4	1 mark for each correct answer
			Function	Input or output	Electronic component		
			Detects lights and produces a signal	Input (1)	Light dependent resistor/ LDR (1)		
			Produces light	Output	Light-emitting diode/ LED/Bulb/Lamp (1)		
			Makes/breaks the circuit/ Switches the night light on/off (1)	Input	Switch		
3	(a)	ii	One from e.g.: - Batteries allow the light to be posi - No wires or mains plug is need	itioned an	where	1	
3	(a)	iii	One from e.g.: - Moulded from polymer which is hold or touch/doesn't get hot - Needs a screwdriver to access - Rounded smooth edges - No small parts as a shell structur	n insulatin atteries/ cir	material/safe for children to uit	1	Must be appropriate for the context in the question: night light used by children

3 (c)

(c) ii

Two ways described e.g:
Thermochromic paints and polymers change colour with temperature (1) baby spoon to let parent know when food is too hot, used in thermometers, clothing, hospital pajamas (1)

Hydrochromic ink/ paint changes colour when wet (1) used in mural to brighten streets/ used on benches to warn when wet (1)

Self-healing paint, self-cleaning coatings. self-healing concrete. (1) repairs fine cracks easily before they worsen e.g. scratches in cars (1)

Nano technology fibres protecting against odour, bacteria etc (1) medical textiles, fighting bacteria, creams to protect against sunburn, capsules that contain beneficial substances applied to fabric and released gradually through abrasion with the skin, wound dressings, children's wear, sportswear, household textiles. (1)

Technical Smart textiles such as super hydrophobic coatings- changes to have a hydrophobic coating to repel water (1) used for keeping surfaces or fabrics clean and avoid corrosion. (1)

BioLogic - shape changing fabric responds to sweat/humidity (1) improves breathability used in sports wear to improve keep athletes cool (1).

Other examples could include:

Smart Memory Alloys and polymers -car bodies, medical and dental products, returns to shape when heat or electrical current applied.
Fastskin - mimics the skin of a shark giving a streamlining effect when under water.
Conductive paints, thread and fibres - Wearable computers or electronics combined in the fabric. Walls that conduct electricity and allow lighting with no wires.

Candidate answers must describe ways the smart material improves functionality or benefits the user.

Any reference to materials that react to light, heat, electricity or other stimuli and react but must relate to how technology functions to benefit users.

For each point -
1 mark for showing understanding of what the smart material is/does
and
1 mark describing how it improves the function of the product/ benefits the user

4	(a)	i	Image A - Lever	1	This is the only correct answer
4	(a)	ii	Up to two marks for an explanation e.g. - they make jobs easier/quicker to carry out (1) because of mechanical advantage/ allowing greater or magnified force to be applied (1) Accept any other acceptable answer	2	Must be appropriate for the context in the question: mechanisms used in kitchen gadgets
4	(b)		Up to two marks for an explanation e.g. - It does not conduct heat so won't get hot when the metal saucepan is heated (1) the user will be able to pick up the saucepan without getting burning hand (1) - The handle retains it shape (1) when used near heat as once moulded it cannot be reheated and remoulded (1)	2	Reason must be appropriate for the context in the question: saucepan
4	(c)	i	One from: - Oak - Beech - Birch - Mahogany Accept any other named hardwood.	1	
4	(c)	ii	Two from: - It is a natural material and is better for the environment - Most timbers contain no toxins to contaminate food - People like natural finishes/looks attractive - The chopping board can be sanded down/oiled again/longevity	2	Reason must be appropriate for the context in the question: chopping board/utensils made from wood Do not accept generic/vague answers such as cheap, strong, durable without qualification. Be careful not to award repeat answers.

	Processes, techniques or skills, e.g.: - wasting methods used to cut the materials (with allowances / tolerances as appropriate) - including accurate use of specific tools. deforming and reforming methods used to shape/mould or strengthen materials and/or components - including accurate use of specific tools or equipment. methods of adddition used to join materials and/or components details of any jigs, templates and formers used. Tools and digital technology, e.g.; all tools required to fulfil the processes and techniques being used.	

knowledge of tools and processes rather than the commercial level of production.

Specific processes and techniques including the use of jigs, templates and formers may not be fully appropriate or identified.

Level 0 (0 marks)

No response or no response worthy of credit.
\(\left.$$
\begin{array}{|l|l|l|}\hline \text { Product } & \begin{array}{l}\text { Manufacturing } \\
\text { process }\end{array} & \begin{array}{l}\text { Manufacturing process, techniques or skills } \\
\text { To include any jigs, templates and formers }\end{array} \\
\hline \begin{array}{l}\text { Product 1: } \\
\text { Recipe cards } \\
\text { (papers and } \\
\text { boards) }\end{array} & \begin{array}{l}\text { Lithography printed, } \\
\text { laminated }\end{array} & \begin{array}{l}\text { Printed on a large sheet of paper- by offset lithography - printing plates are produced - oil-based ink is } \\
\text { applied as paper is pushed through a series of rollers, the process uses four ink colours CMYK the colours } \\
\text { are overlayed to produce more colours } \\
\text { Laminated to cardboard board material and a polypropylene film thermal lamination process to laminate both } \\
\text { sides then could be CNC cut or die cut to shape } \\
\text { Die cutting - a steel die is lowered cardboard and pressed to cut out the shape and hole for riveting punched } \\
\text { at the same time. Cards are stacked held in place and riveted }\end{array} \\
\hline \begin{array}{l}\text { Product 2: } \\
\text { Oven glove } \\
\text { (fibres and } \\
\text { fabrics) }\end{array} & \begin{array}{l}\text { Quilted, overlocked } \\
\text { and sewed }\end{array} & \begin{array}{l}\text { Layers of fabric are held together, and straight stitch machine sewn in diagonals to provide quilting with } \\
\text { industrial sewing machine } \\
\text { Glove shape is cut out following a pattern and two layers are sewn (double stitching of seams) and } \\
\text { overlocked - edging and hanging loop is then sewn on separately }\end{array} \\
\hline \begin{array}{l}\text { Product 3: } \\
\text { Electronic } \\
\text { thermometer } \\
\text { (design } \\
\text { engineering) }\end{array} & \begin{array}{l}\text { Surface mounted } \\
\text { printed circuit board } \\
\text { (PCB) }\end{array} & \begin{array}{l}\text { Injection moulding polymer granules/pellets are poured into the machine through a hopper. The granules } \\
\text { are heated and melted to liquid form as they are carried along the barrel by the screw. The piston is drawn } \\
\text { back then released so the liquid plastic is rammed by the screw into the mould through a nozzle. To cool the } \\
\text { mould quickly, water is pumped around the mould chambers. The mould then opens and the part is ejected } \\
\text { by the ejector pins. To finish the part the sprues and any flashing will need to be removed. }\end{array} \\
\hline \text { casing } & \text { Product 4: } & \text { Vacuum formed } \\
\text { Cutlery tray } \\
\text { (polymers) }\end{array}
$$ \quad \begin{array}{l}PcB board produced by photo etching - surface mounted components, pick and place method, held in

place by a sticky solder paste then soldered in a reflow soldering oven and assembled into an injection

moulded casing\end{array}\right\}\)| Vacuum forming - a mould/former made from aluminum with draft angles, filleted corners |
| :--- |
| Sheet fed onto vacuum former using rollers, clamped into place and heated, heat is then removed and the |
| vacuum pump is switched on to remove the air. This causes the polymer to be forced against the former taking |
| its shape. The material is allowed to cool, sometimes blown air or a fine water spray. The component is then |
| released from the mould with small amount of air pressure and then trimmed and edge finished as necessary. |
| Next sheet placed over and process repeats |

Product 6:	Lamination	A former made from aluminum or wood/aluminum, layers of wood with multi- directional grain (strength) are layered, glue is applied with a roller and layers are placed between the two formers, male and female or Recipe oook/tablet stand (timbers)

Question			Answer		Mark	Guidance
5	(b)	i	Two from:		2	Working and characteristic
			Product 1: papers and boards: Recipe cards Polypropylene - Can be wiped clean - Transparent Cardboard/paper - Can be die cut - can be printed - cheap compared to other materials	Product 2: Fibres \& fabrics: Oven glove Cotton/felted polyester: - Can be washed - Lightweight to wear - Comfortable against skin - Can be sewn and quilted easily Felted polyester - Heat resistant - Resistance to mildew		Answers need to be appropriate to the chosen product. Strong, durable, cheap etc. must be qualified
			Product 3: Design engineering: Electronic thermometer ABS for casing: - Can be moulded to shape - Can be wiped down easily - Durable in use	Product 4: Polymers: Cutlery tray Polypropylene: cutlery tray - Easily washed - Can be moulded to shape - Resistant to wear and tear		
			Product 5: Metals: Food grater Stainless steel: - Can be washed - Rust proof, does not corrode - Can be easily bent and formed to shape	Product 6: Timbers: Recipe book/tablet stand Beech veneer: - Can be laminated - Strong when laminated - Beech veneer can be finished with oil so it is aesthetically pleasing		

			• Plywood is durable (must be Qualified) • Can be bent \& shaped Accept any other appropriate answers related to the materials in the Insert for the chosen product.		
5	(b)	ii	Two environmental considerations of the materials used e.g: - Does it come from a sustainable source/FSC managed forest/renewable source - Has renewable energy been used in manufacture/Wind/Solar/Tidal power - Has it been/can it be upcycled/ re-used/recycled - Does it have minimal impact on the environment during its lifecycle - Can it be disposed of safely after use	2	
5	(c)	i	Three reasons from: - To test functionality/ if it works or mechanisms (1) using working models (1) - To test size (1) using block models or calico models (1) - To see if its easy to use/ test ergonomics (1) with users (1) - To check what it looks like/test aesthetics (1) explore form, proportion, shape (1) - To get user feedback (1) and find ways to improve the design/ identify weaknesses (1) - To test materials (1) and how suitable they are for use (1) - To explore possible manufacturing methods (1) and construction techniques to work out best way to make it (1)	6	Answer should explain three reasons why designers use iterative modelling. For each point: Look for a suitable reason (1) and then an explanation of how the modelling is used (1) Look for an explanation of type of model and why it is used to award two marks
5	(c)	ii	Responses should identify specific materials used to model ideas and methods of specific model making tools and methods - Two methods identified (up to two marks) - Specific modelling materials identified (up to two marks) - Specific tools and equipment identified (up to two marks)	6	An early iterative model might be a model to test function e.g. a fastening method, a working mechanism or circuit. It could be a block model that tests appearance, ergonomics, usability or size.

Processes, techniques or skills could cover

- Wasting methods used to cut the materials - including use of specific tools.
- Methods of addition used to join materials and/or components.
- Tools and digital technology.

These could include:

Recipe cards

Model could be made from thin card with graphics printed on, font sizes and layout of text and images can be tested - paper would be glued to card spray mount or glue stick, cards would be cut with craft knife, using a safety ruler and cutting mat or scissors. A paper fastener would be used to trial position to achieve the cards movement and joining method.

Oven glove

A full size glove could be made from calico to test size of glove this would be hand (needle and cotton) or machine sewn - paper template or model/Toile made first and held against a hand to check, CAD could be used to make paper template, paper and calico cut with scissors or a craft knife. Real materials could be used to test a one side of the glove and quilting thickness and layers to check how functionality and heat protection. Stitches and finishes could be tried and tested for strength

Electronic thermometer

A block model of case can be made from, cardboard, Styrofoam or Jelutong to test comfort in use, string and straws can be used to create a model probe, 3D design could be modelled on a 3D CAD package such as solidworks, proengineer, AutoCAD or 3Dfusion.
Breadboard can be used to test circuit is functional with actual components, circuit wizard to test circuit on a computer, a first PCB board can be produced using etching and components soldered to test circuit size

Cutlery tray

3D design could be modelled on a 3D CAD package such as solidworks, proengineer, AutoCAD or 3Dfusion. Card model can be made to test size overall and compartments, card would be cut with craft knife, using a safety

A later model may use workshop processes and similar materials to make a first prototype

Answers should refer to more than one method

- Two modelling methods need to be identified
- Specific modelling materials identified these could be for model itself or mould/patterns
- Specific tools and equipment identified and explained

			ruler and cutting mat or scissors, glued using a glue gun. A first vacuum forming could be tried in school workshop, mould made from blocks of wood draft angles sanded with a belt sander - description will differ from the commercial process Food Grater 3D design could be modelled on a 3D CAD package such as solidworks, proengineer, AutoCAD or 3Dfusion. Card model can be made to test size overall and compartments, card would be cut with craft knife, using a safety ruler and cutting mat or scissors, glued using a glue gun. One part of the grater could be made in thin sheet steel or aluminum to test the grater cut using sheet metal cutter, tin snips or piercing saw. A 3D model from sheet aluminum could be cut and folded Recipe book/tablet stand 3D design could be modelled on a 3D CAD package such as solidworks, proengineer, AutoCAD or 3Dfusion. Card model can be made to test size overall and compartments, card would be cut with craft knife, using a safety ruler and cutting mat or scissors. Bends can be tested making a mould from Styrofoam and testing laminated sections using layers of 0.8 mm birch-faced plywood and PVA glue (will differ from commercial manufacture)		
6	(a)		Two from: Recipe cards - Width of card allows it to be held in one hand - Ease of separating cards on pivot - Rounded edges comfortable to hold - Colour of font and/or size of font easy to read Oven glove - The size of the glove allows different size hands to use including $95^{\text {th }}$ percentile - The shape of the glove allows thumb to slide in and achieve a comfortable fit - The glove is lightweight and easy to use - The hook is easy to hold and easy to use to hang the glove up	4	Answers need to relate to ease of use/ or ease of understanding/ comfort in use The size of product must be related to human use The size of a hand is not worthy of mark unless related to the size of product as this is anthropometrics not ergonomics

OCR (Oxford Cambridge and RSA Examinations)
The Triangle Building
Shaftesbury Road
Cambridge
CB2 8EA
OCR Customer Contact Centre
Education and Learning
Telephone: 01223553998
Facsimile: 01223552627
Email: general.qualifications@ocr.org.uk
www.ocr.org.uk

For staff training purposes and as part of our quality assurance programme your call may be recorded or monitored

