| Please check the examination de | tails bel | ow before ente | ring your candidate information | |--|-----------|--------------------|---------------------------------| | Candidate surname | | | Other names | | Pearson Edexcel
Level 3 GCE | Cen | tre Number | Candidate Number | | Time 2 hours | | Paper
reference | 9PS0/03 | | Psychology Advanced PAPER 3: Psychologic | cal s | kills | | | You do not need any other ma | ateria | ls. | Total Marks | ### **Instructions** - Use **black** ink or ball-point pen. - **Fill in the boxes** at the top of this page with your name, centre number and candidate number. - Answer all questions. - Answer the questions in the spaces provided - there may be more space than you need. ## Information - The total mark for this paper is 80. - The marks for **each** question are shown in brackets - use this as a guide as to how much time to spend on each question. - The list of formulae and statistical tables are printed at the start of this paper. - Candidates may use a calculator. #### **Advice** - Read each question carefully before you start to answer it. - Check your answers if you have time at the end. - Good luck with your examination. Turn over ▶ ### FORMULAE AND STATISTICAL TABLES **Standard deviation (sample estimate)** $$\sqrt{\left(\frac{\sum (x-\bar{x})^2}{n-1}\right)}$$ Spearman's rank correlation coefficient $$1 - \frac{6\sum d^2}{n(n^2 - 1)}$$ **Critical values for Spearman's rank** Level of significance for a one-tailed test | | Le | vei oi sigiiiii | cance for a | one-taneu t | est | |----|-------|-----------------|-------------|--------------|--------| | | 0.05 | 0.025 | 0.01 | 0.005 | 0.0025 | | | Le | vel of signifi | cance for a | two-tailed t | est | | Ν | 0.10 | 0.05 | 0.025 | 0.01 | 0.005 | | 5 | 0.900 | 1.000 | 1.000 | 1.000 | 1.000 | | 6 | 0.829 | 0.886 | 0.943 | 1.000 | 1.000 | | 7 | 0.714 | 0.786 | 0.893 | 0.929 | 0.964 | | 8 | 0.643 | 0.738 | 0.833 | 0.881 | 0.905 | | 9 | 0.600 | 0.700 | 0.783 | 0.833 | 0.867 | | 10 | 0.564 | 0.648 | 0.745 | 0.794 | 0.830 | | 11 | 0.536 | 0.618 | 0.709 | 0.755 | 0.800 | | 12 | 0.503 | 0.587 | 0.678 | 0.727 | 0.769 | | 13 | 0.484 | 0.560 | 0.648 | 0.703 | 0.747 | | 14 | 0.464 | 0.538 | 0.626 | 0.679 | 0.723 | | 15 | 0.446 | 0.521 | 0.604 | 0.654 | 0.700 | | 16 | 0.429 | 0.503 | 0.582 | 0.635 | 0.679 | | 17 | 0.414 | 0.485 | 0.566 | 0.615 | 0.662 | | 18 | 0.401 | 0.472 | 0.550 | 0.600 | 0.643 | | 19 | 0.391 | 0.460 | 0.535 | 0.584 | 0.628 | | 20 | 0.380 | 0.447 | 0.520 | 0.570 | 0.612 | | 21 | 0.370 | 0.435 | 0.508 | 0.556 | 0.599 | | 22 | 0.361 | 0.425 | 0.496 | 0.544 | 0.586 | | 23 | 0.353 | 0.415 | 0.486 | 0.532 | 0.573 | | 24 | 0.344 | 0.406 | 0.476 | 0.521 | 0.562 | | 25 | 0.337 | 0.398 | 0.466 | 0.511 | 0.551 | | 26 | 0.331 | 0.390 | 0.457 | 0.501 | 0.541 | | 27 | 0.324 | 0.382 | 0.448 | 0.491 | 0.531 | | 28 | 0.317 | 0.375 | 0.440 | 0.483 | 0.522 | | 29 | 0.312 | 0.368 | 0.433 | 0.475 | 0.513 | | 30 | 0.306 | 0.362 | 0.425 | 0.467 | 0.504 | | | | | | | | The calculated value must be equal to or exceed the critical value in this table for significance to be shown. # **Chi-squared distribution formula** $$X^{2} = \sum \frac{(O-E)^{2}}{E}$$ $df = (r-1)(c-1)$ # Critical values for chi-squared distribution | Level | of si | gnificance | for a | one-tai | led test | |-------|-------|------------|-------|---------|----------| |-------|-------|------------|-------|---------|----------| | | 0.10 | 0.05 | 0.025 | 0.01 | 0.005 | 0.0005 | |----|-------|------------|-------------|------------|-------------|--------| | | | Level of s | ignificance | for a two- | tailed test | | | df | 0.20 | 0.10 | 0.05 | 0.025 | 0.01 | 0.001 | | 1 | 1.64 | 2.71 | 3.84 | 5.02 | 6.64 | 10.83 | | 2 | 3.22 | 4.61 | 5.99 | 7.38 | 9.21 | 13.82 | | 3 | 4.64 | 6.25 | 7.82 | 9.35 | 11.35 | 16.27 | | 4 | 5.99 | 7.78 | 9.49 | 11.14 | 13.28 | 18.47 | | 5 | 7.29 | 9.24 | 11.07 | 12.83 | 15.09 | 20.52 | | 6 | 8.56 | 10.65 | 12.59 | 14.45 | 16.81 | 22.46 | | 7 | 9.80 | 12.02 | 14.07 | 16.01 | 18.48 | 24.32 | | 8 | 11.03 | 13.36 | 15.51 | 17.54 | 20.09 | 26.12 | | 9 | 12.24 | 14.68 | 16.92 | 19.02 | 21.67 | 27.88 | | 10 | 13.44 | 15.99 | 18.31 | 20.48 | 23.21 | 29.59 | | 11 | 14.63 | 17.28 | 19.68 | 21.92 | 24.73 | 31.26 | | 12 | 15.81 | 18.55 | 21.03 | 23.34 | 26.22 | 32.91 | | 13 | 16.99 | 19.81 | 22.36 | 24.74 | 27.69 | 34.53 | | 14 | 18.15 | 21.06 | 23.69 | 26.12 | 29.14 | 36.12 | | 15 | 19.31 | 22.31 | 25.00 | 27.49 | 30.58 | 37.70 | | 16 | 20.47 | 23.54 | 26.30 | 28.85 | 32.00 | 39.25 | | 17 | 21.62 | 24.77 | 27.59 | 30.19 | 33.41 | 40.79 | | 18 | 22.76 | 25.99 | 28.87 | 31.53 | 34.81 | 42.31 | | 19 | 23.90 | 27.20 | 30.14 | 32.85 | 36.19 | 43.82 | | 20 | 25.04 | 28.41 | 31.41 | 34.17 | 37.57 | 45.32 | | 21 | 26.17 | 29.62 | 32.67 | 35.48 | 38.93 | 46.80 | | 22 | 27.30 | 30.81 | 33.92 | 36.78 | 40.29 | 48.27 | | 23 | 28.43 | 32.01 | 35.17 | 38.08 | 41.64 | 49.73 | | 24 | 29.55 | 33.20 | 36.42 | 39.36 | 42.98 | 51.18 | | 25 | 30.68 | 34.38 | 37.65 | 40.65 | 44.31 | 52.62 | | 26 | 31.80 | 35.56 | 38.89 | 41.92 | 45.64 | 54.05 | | 27 | 32.91 | 36.74 | 40.11 | 43.20 | 46.96 | 55.48 | | 28 | 34.03 | 37.92 | 41.34 | 44.46 | 48.28 | 56.89 | | 29 | 35.14 | 39.09 | 42.56 | 45.72 | 49.59 | 58.30 | | 30 | 36.25 | 40.26 | 43.77 | 46.98 | 50.89 | 59.70 | | 40 | 47.27 | 51.81 | 55.76 | 59.34 | 63.69 | 73.40 | | 50 | 58.16 | 63.17 | 67.51 | 71.42 | 76.15 | 86.66 | | 60 | 68.97 | 74.40 | 79.08 | 83.30 | 88.38 | 99.61 | | 70 | 79.72 | 85.53 | 90.53 | 95.02 | 100.43 | 112.32 | The calculated value must be equal to or exceed the critical value in this table for significance to be shown. # Mann-Whitney U test formulae $$U_a = n_a n_b + \frac{n_a(n_a+1)}{2} - \sum R_a$$ $$U_b = n_a n_b + \frac{n_b (n_b + 1)}{2} - \sum R_b$$ (U is the smaller of U_a and U_b) # Critical values for the Mann-Whitney U test | | | | | | | | | ~ | | | | | | | | | |----------------|--------|---------|--------|--------|--------|---------|-----|----|----|----|-----|-----|-----|-----|-----|-----| | | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | | N _a | | | | | | | | | | | | | | | | | | $p \leq 0.0$ | 5 (one | e-taile | ed), p | ≤ 0.10 | 0 (two | o-taile | ed) | | | | | | | | | | | 5 | 4 | 5 | 6 | 8 | 9 | 11 | 12 | 13 | 15 | 16 | 18 | 19 | 20 | 22 | 23 | 25 | | 6 | 5 | 7 | 8 | 10 | 12 | 14 | 16 | 17 | 19 | 21 | 23 | 25 | 26 | 28 | 30 | 32 | | 7 | 6 | 8 | 11 | 13 | 15 | 17 | 19 | 21 | 24 | 26 | 28 | 30 | 33 | 35 | 37 | 39 | | 8 | 8 | 10 | 13 | 15 | 18 | 20 | 23 | 26 | 28 | 31 | 33 | 36 | 39 | 41 | 44 | 47 | | 9 | 9 | 12 | 15 | 18 | 21 | 24 | 27 | 30 | 33 | 36 | 39 | 42 | 45 | 48 | 51 | 54 | | 10 | 11 | 14 | 17 | 20 | 24 | 27 | 31 | 34 | 37 | 41 | 44 | 48 | 51 | 55 | 58 | 62 | | 11 | 12 | 16 | 19 | 23 | 27 | 31 | 34 | 38 | 42 | 46 | 50 | 54 | 57 | 61 | 65 | 69 | | 12 | 13 | 17 | 21 | 26 | 30 | 34 | 38 | 42 | 47 | 51 | 55 | 60 | 64 | 68 | 72 | 77 | | 13 | 15 | 19 | 24 | 28 | 33 | 37 | 42 | 47 | 51 | 56 | 61 | 65 | 70 | 75 | 80 | 84 | | 14 | 16 | 21 | 26 | 31 | 36 | 41 | 46 | 51 | 56 | 61 | 66 | 71 | 77 | 82 | 87 | 92 | | 15 | 18 | 23 | 28 | 33 | 39 | 44 | 50 | 55 | 61 | 66 | 72 | 77 | 83 | 88 | 94 | 100 | | 16 | 19 | 25 | 30 | 36 | 42 | 48 | 54 | 60 | 65 | 71 | 77 | 83 | 89 | 95 | 101 | 107 | | 17 | 20 | 26 | 33 | 39 | 45 | 51 | 57 | 64 | 70 | 77 | 83 | 89 | 96 | 102 | 109 | 115 | | 18 | 22 | 28 | 35 | 41 | 48 | 55 | 61 | 68 | 75 | 82 | 88 | 95 | 102 | 109 | 116 | 123 | | 19 | 23 | 30 | 37 | 44 | 51 | 58 | 65 | 72 | 80 | 87 | 94 | 101 | 109 | 116 | 123 | 130 | | 20 | 25 | 32 | 39 | 47 | 54 | 62 | 69 | 77 | 84 | 92 | 100 | 107 | 115 | 123 | 130 | 138 | N_b | | | | | | | | | $N_{\rm b}$ | | | | | | | | | |-----------------------|-------|--------|---------------|---------------|--------|--------|-------|----------------|------|----|------|----|----|-----|-----|------| | | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | | V
a | | | | | | | | | | | | | | | | | | 0.0 ≥ 0 | 1 (on | e-tail | ed), <i>p</i> | ≤ 0.0 | 2 (tw | o-tail | ed) | | | | | | | | | | | 5 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | | 6 | 2 | 3 | 4 | 6 | 7 | 8 | 9 | 11 | 12 | 13 | 15 | 16 | 18 | 19 | 20 | 22 | | 7 | 3 | 4 | 6 | 7 | 9 | 11 | 12 | 14 | 16 | 17 | 19 | 21 | 23 | 24 | 26 | 28 | | 8 | 4 | 6 | 7 | 9 | 11 | 13 | 15 | 17 | 20 | 22 | 24 | 26 | 28 | 30 | 32 | 34 | | 9 | 5 | 7 | 9 | 11 | 14 | 16 | 18 | 21 | 23 | 26 | 28 | 31 | 33 | 36 | 38 | 40 | | 10 | 6 | 8 | 11 | 13 | 16 | 19 | 22 | 24 | 27 | 30 | 33 | 36 | 38 | 41 | 44 | 47 | | 11 | 7 | 9 | 12 | 15 | 18 | 22 | 25 | 28 | 31 | 34 | 37 | 41 | 44 | 47 | 50 | 53 | | 12 | 8 | 11 | 14 | 17 | 21 | 24 | 28 | 31 | 35 | 38 | 42 | 46 | 49 | 53 | 56 | 60 | | 13 | 9 | 12 | 16 | 20 | 23 | 27 | 31 | 35 | 39 | 43 | 47 | 51 | 55 | 59 | 63 | 67 | | 14 | 10 | 13 | 17 | 22 | 26 | 30 | 34 | 38 | 43 | 47 | 51 | 56 | 60 | 65 | 69 | 73 | | 15 | 11 | 15 | 19 | 24 | 28 | 33 | 37 | 42 | 47 | 51 | 56 | 61 | 66 | 70 | 75 | 80 | | 16 | 12 | 16 | 21 | 26 | 31 | 36 | 41 | 46 | 51 | 56 | 61 | 66 | 71 | 76 | 82 | 87 | | 17 | 13 | 18 | 23 | 28 | 33 | 38 | 44 | 49 | 55 | 60 | 66 | 71 | 77 | 82 | 88 | 93 | | 18 | 14 | 19 | 24 | 30 | 36 | 41 | 47 | 53 | 59 | 65 | 70 | 76 | 82 | 88 | 94 | 10 | | 19 | 15 | 20 | 26 | 32 | 38 | 44 | 50 | 56 | 63 | 69 | 75 | 82 | 88 | 94 | 101 | 10 | | 20 | 16 | 22 | 28 | 34 | 40 | 47 | 53 | 60 | 67 | 73 | 80 | 87 | 93 | 100 | 107 | 114 | | 20 | 10 | | 20 | 34 | 40 | 4/ | - 33 | - 00 | - 07 | /3 | - 00 | 0/ | 95 | 100 | 107 | 1 14 | | | | | | | | | | N _b | | | | | | | | | | V _a | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | | o ≤ 0.0 | 25 (o | ne-ta | iled), | <i>p</i> ≤ 0. | 05 (tv | vo-ta | iled) | | | | | | | | | | | 5 | 2 | 3 | 5 | 6 | 7 | 8 | 9 | 11 | 12 | 13 | 14 | 15 | 17 | 18 | 19 | 20 | | 6 | 3 | 5 | 6 | 8 | 10 | 11 | 13 | 14 | 16 | 17 | 19 | 21 | 22 | 24 | 25 | 27 | | 7 | 5 | 6 | 8 | 10 | 12 | 14 | 16 | 18 | 20 | 22 | 24 | 26 | 28 | 30 | 32 | 34 | | 8 | 6 | 8 | 10 | 13 | 15 | 17 | 19 | 22 | 24 | 26 | 29 | 31 | 34 | 36 | 38 | 41 | | 9 | 7 | 10 | 12 | 15 | 17 | 20 | 23 | 26 | 28 | 31 | 34 | 37 | 39 | 42 | 45 | 48 | | 10 | 8 | 11 | 14 | 17 | 20 | 23 | 26 | 29 | 33 | 36 | 39 | 42 | 45 | 48 | 52 | 55 | | 11 | 9 | 13 | 16 | 19 | 23 | 26 | 30 | 33 | 37 | 40 | 44 | 47 | 51 | 55 | 58 | 62 | | 12 | 11 | 14 | 18 | 22 | 26 | 29 | 33 | 37 | 41 | 45 | 49 | 53 | 57 | 61 | 65 | 69 | | 13 | 12 | 16 | 20 | 24 | 28 | 33 | 37 | 41 | 45 | 50 | 54 | 59 | 63 | 67 | 72 | 76 | | 14 | 13 | 17 | 22 | 26 | 31 | 36 | 40 | 45 | 50 | 55 | 59 | 64 | 67 | 74 | 78 | 83 | | 15 | 14 | 19 | 24 | 29 | 34 | 39 | 44 | 49 | 54 | 59 | 64 | 70 | 75 | 80 | 85 | 90 | | 16 | 15 | 21 | 26 | 31 | 37 | 42 | 47 | 53 | 59 | 64 | 70 | 75 | 81 | 86 | 92 | 98 | | 17 | 17 | 22 | 28 | 34 | 39 | 45 | 51 | 57 | 63 | 67 | 75 | 81 | 87 | 93 | 99 | 10 | | 18 | 18 | 24 | 30 | 36 | 42 | 48 | 55 | 61 | 67 | 74 | 80 | 86 | 93 | 99 | 106 | 112 | | 19 | 19 | 25 | 32 | 38 | 45 | 52 | 58 | 65 | 72 | 78 | 85 | 92 | 99 | 106 | 113 | 119 | | | | | | | | | | N _b | | | | | | | | | |----------------|-------|-------|--------|---------------|---------|-------|-------|----------------|----|----|----|----|----|----|----|-----| | | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | | N _a | | | | | | | | | | | | | | | | | | $p \leq 0.0$ | 05 (o | ne-ta | iled), | <i>p</i> ≤ 0. | .01 (tv | vo-ta | iled) | | | | | | | | | | | 5 | 0 | 1 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | | 6 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 9 | 10 | 11 | 12 | 13 | 15 | 16 | 17 | 18 | | 7 | 1 | 3 | 4 | 6 | 7 | 9 | 10 | 12 | 13 | 15 | 16 | 18 | 19 | 21 | 22 | 24 | | 8 | 2 | 4 | 6 | 7 | 9 | 11 | 13 | 15 | 17 | 18 | 20 | 22 | 24 | 26 | 28 | 30 | | 9 | 3 | 5 | 7 | 9 | 11 | 13 | 16 | 18 | 20 | 22 | 24 | 27 | 29 | 31 | 33 | 36 | | 10 | 4 | 6 | 9 | 11 | 13 | 16 | 18 | 21 | 24 | 26 | 29 | 31 | 34 | 37 | 39 | 42 | | 11 | 5 | 7 | 10 | 13 | 16 | 18 | 21 | 24 | 27 | 30 | 33 | 36 | 39 | 42 | 45 | 48 | | 12 | 6 | 9 | 12 | 15 | 18 | 21 | 24 | 27 | 31 | 34 | 37 | 41 | 44 | 47 | 51 | 54 | | 13 | 7 | 10 | 13 | 17 | 20 | 24 | 27 | 31 | 34 | 38 | 42 | 45 | 49 | 53 | 56 | 60 | | 14 | 7 | 11 | 15 | 18 | 22 | 26 | 30 | 34 | 38 | 42 | 46 | 50 | 54 | 58 | 63 | 67 | | 15 | 8 | 12 | 16 | 20 | 24 | 29 | 33 | 37 | 42 | 46 | 51 | 55 | 60 | 64 | 69 | 73 | | 16 | 9 | 13 | 18 | 22 | 27 | 31 | 36 | 41 | 45 | 50 | 55 | 60 | 65 | 70 | 74 | 79 | | 17 | 10 | 15 | 19 | 24 | 29 | 34 | 39 | 44 | 49 | 54 | 60 | 65 | 70 | 75 | 81 | 86 | | 18 | 11 | 16 | 21 | 26 | 31 | 37 | 42 | 47 | 53 | 58 | 64 | 70 | 75 | 81 | 87 | 92 | | 19 | 12 | 17 | 22 | 28 | 33 | 39 | 45 | 51 | 56 | 63 | 69 | 74 | 81 | 87 | 93 | 99 | | 20 | 13 | 18 | 24 | 30 | 36 | 42 | 48 | 54 | 60 | 67 | 73 | 79 | 86 | 92 | 99 | 105 | The calculated value must be equal to or less than the critical value in this table for significance to be shown. ### **Wilcoxon Signed Ranks test process** - Calculate the difference between two scores by taking one from the other - Rank the differences giving the smallest difference Rank 1 Note: do not rank any differences of 0 and when adding the number of scores, do not count those with a difference of 0, and ignore the signs when calculating the difference - Add up the ranks for positive differences - Add up the ranks for negative differences - T is the figure that is the smallest when the ranks are totalled (may be positive or negative) - N is the number of scores left, ignore those with 0 difference ## **Critical values for the Wilcoxon Signed Ranks test** # Level of significance for a one-tailed test | | 0.05 | 0.025 | 0.01 | |-----|-----------------|-------------------|-------------| | | Level of signif | icance for a two- | tailed test | | n | 0.1 | 0.05 | 0.02 | | N=5 | 0 | - | - | | 6 | 2 | 0 | - | | 7 | 3 | 2 | 0 | | 8 | 5 | 3 | 1 | | 9 | 8 | 5 | 3 | | 10 | 11 | 8 | 5 | | 11 | 13 | 10 | 7 | | 12 | 17 | 13 | 9 | | | | | | The calculated value must be equal to or less than the critical value in this table for significance to be shown. ### **Answer ALL questions.** #### **SECTION A** #### **Research Methods** ### 1 Instagram study Researchers investigated whether there was a difference in how an Instagram user perceived their own personality compared to how others would perceive their personality. Four Instagram users (group 1) and 65 observers (group 2), who did not know the Instagram users, were recruited for the study. Instagram users (group 1) had to complete a self-report personality test that measured a number of personality traits, including extraversion and openness. - Extraversion (categorised by sociable traits) included statements such as 'I see myself as enthusiastic'. - Openness (a curiosity for artistic pursuits and appreciation for alternative viewpoints) included statements such as 'I see myself as open to new experiences'. Each participant rated themselves on a scale from 1 (strongly disagree) to 7 (strongly agree), as shown in **Figure 1**. | Strongly
disagree | Moderately
disagree | Slightly
disagree | Neither
agree nor
disagree | Slightly
agree | Moderately agree | Strongly
agree | |----------------------|------------------------|----------------------|----------------------------------|-------------------|------------------|-------------------| | 1 | 2 | 3 | 4 | 5 | 6 | 7 | ### Figure 1 The observers (group 2) viewed screenshots of the Instagram users' profiles. They were then asked to complete an adapted form of the same personality test to measure their perception of each of the four Instagram users (group 1). The researchers compared the mean self-report scores of the Instagram users (group 1) to the mean scores as rated by the observers (group 2) on the different personality measures. The results of the Instagram study are shown in **Table 1**. | Rater | Extraversion (1–7) | Openness (1–7) | |---|--------------------|----------------| | Instagram user 1 self-rating | 3.00 | 7.00 | | Observers' mean rating for Instagram user 1's profile | 4.61 | 5.20 | | Instagram user 2 self-rating | 3.50 | 6.00 | | Observers' mean rating for Instagram user 2's profile | 5.12 | 5.91 | | Instagram user 3 self-rating | 5.00 | 5.50 | | Observers' mean rating for Instagram user 3's profile | 5.14 | 5.13 | | Instagram user 4 self-rating | 3.50 | 6.50 | | Observers' mean rating for Instagram user 4's profile | 3.61 | 5.60 | (Source: adapted from Harris and Bardey (2019)) # Table 1 (a) Explain one conclusion you can make regarding 'extraversion' using the data | in Table 1 . | (2) | |---------------------|-----| (b) Explain one conclusion you can make regarding in Table 1 . | openness' using the data | |--|-----------------------------| | | (2) | (c) Explain one strength of the researchers collecting | ng quantitative data in the | | (c) Explain one strength of the researchers collecting instagram study. | ng quantitative data in the | () - | | |--|-----------| | (d) The researchers in the Instagram study decided to carry out follow-up | | | unstructured interviews with the observers (group 2). | | | unstructured interviews with the observers (group 2). | | | | | | Explain two strengths of using an unstructured interview with the observers | | | | | | (group 2) in the Instagram study. | | | | (4) | | | (- / | | | | | 1 | 2 | (Total for Question 1 = 10 | marks) | | (Total for Question 1 = To | iliai K5) | (2) ### 2 Navigation study Researchers wanted to investigate whether there were sex differences in navigation strategy and efficiency. The researchers created a virtual reality (VR) maze and placed five objects in various parts of the maze, such as a chair or a rubber duck. Participants were required to orientate themselves around the maze until they had seen all five objects, as indicated by black dots in **Figure 2**. **Figure 2** shows an aerial view of the maze and **Figure 3** shows the view a participant would have seen. Figure 2 Figure 3 The researchers wanted to assess the strategy used by males and females after they had completed the maze. (a) The researchers of the navigation study decided to recruit a sample of participants from the local town. Describe how the researchers could have used a random sampling technique to recruit the participants for the navigation study from the local town. | (2) | |-----| | | | | | | | | | | | | | | | | | b) Explain one we
study. | J | • | | | (2) | |---|---------------------|-----------------------------------|---|---------------|-------------------| | | | | | | | | igure 4 shows the | e strategies used l | | | | - | | Freduction 16 | shortcuts | Learned
Strategy use | T | wandering | Male Female | | c) Explain one cor
the data in Fig u | | Figure 4 archers of the na | | study could n | nake using
(2) | | | | | | | | | | | | | | | (d) The researchers of the navigation study also collected the time taken for males and females to complete the maze task. They summarised their data using categories, which is displayed in **Table 2**. | | Less than 1 minute to complete the maze task | More than 1 minute to complete the maze task | |---------|--|--| | Males | 14 | 9 | | Females | 10 | 12 | Table 2 Using their summarised data, the researchers decided to carry out a chi-squared test to see if there was a difference in the time taken by males and females to complete the maze task. Complete **Table 3** to calculate the chi-squared test for the navigation study. You must give all your answers to **two** decimal places. (4) | | | Observed | Expected | O-E | (O-E) ² | (O-E) ² /E | |---------|--|----------|----------|-----|--------------------|-----------------------| | Males | Less than 1 minute to complete the maze task | 14 | 12.27 | | | | | Males | More than 1 minute to complete the maze task | 9 | 10.73 | | | | | Famalas | Less than 1 minute to complete the maze task | 10 | 11.73 | | | | | Females | More than 1 minute to complete the maze task | 12 | 10.27 | | | | Chi-squared = Table 3 | (e |) Explain two improvements that the researchers could make to the navigation study. | | |----|--|------| | | study. | (4) | | 1 | 2 | (Total for Question 2 = 14 ma | rks) | | | | | TOTAL FOR SECTION A = 24 MARKS #### **SECTION B** #### **Review of Studies** ## 3 Scary and nasty beasts study With animal phobias being one of the most prevalent mental health disorders researchers wanted to investigate the creatures people found most scary and revolting. Researchers asked 1,798 participants to complete an online survey about 10 creatures, such as a spider or snail. They were shown each creature in a photograph in a random order. Participants had to rate their fear and disgust for each of the creatures on a scale from 1 (no fear/disgust) to 7 (extreme fear/disgust). A red panda was used as one of the 10 creatures shown to participants, as a control stimulus. The results of the scary and nasty beasts study are shown in **Table 4**. | Creature | Mean fear (1–7) | Mean disgust (1–7) | |-----------|-----------------|--------------------| | Bull | 3.84 | 1.62 | | Cockroach | 3.10 | 4.16 | | Pigeon | 1.48 | 2.01 | | Red panda | 1.57 | 1.17 | | Snail | 1.15 | 1.69 | | Snake | 4.34 | 2.83 | | Spider | 4.39 | 4.47 | | Tapeworm | 3.60 | 4.83 | (Source: adapted from Polák et al. (2019)) #### Table 4 | (a) Explain one weakness of the scary and nasty beasts study in terms of validity. | (2) | |---|-----| | | | | | | | | | | | | | (b) Using research evidence, explain how far evolution and natural selectio
account for the findings of the scary and nasty beasts study. | (6) | |--|-----| (Total for Question 3 = 8 marks) | |----------------------------------| | | | × | | | | | |--|---|----|---|--| | \vee | Ŷ | Ø | | | | | | | Ē | | | | | X | | Z | | | | Ď | ø | и | К | | | 84 | | ∠ | ۵ | | | | | | | | | X | ä | ú | ν | Ų | | | | | | | | | | | | | | ą | К | ù | 4 | S | | | ä | à | ú | Ŕ | | | Ž | Ì | ĺ | 8 | | | Ž | | į | Ŗ | | | 2 | | | 3 | | | Ž | | | 2 | | | X | 5 | ₹ | 3 | | | X | 5 | ₹ | | | | X | 5 | ₹ | | | | X | 5 | ₹ | | | | X | E | 2 | 5 | | | X | E | 2 | 5 | | | X
N | | 74 | | | | X
N
D X
N | | 74 | | | | | | | | | | | | | | | | NAME OF PARTICION PARTICIONO | | | | | | NAME OF PARTICION PARTICIONO | | | | | | | | | | | | NAME OF THE PARTY | | | | | | NAME OF THE PARTY | | | | | | NAME OF THE PARTY | | | | | | NAME OF THE PARTY | | | | | | NAME OF THE PARTY | | | | | | NAME OF THE PARTY | | | | | | | | | | | | | | | | | | NAME OF THE PARTY | (16) |
 | |-----------------------------------| | | | | |
 | | | | | |
 | | | | (Total for Question 4 = 16 marks) | | TOTAL FOR SECTION B = 24 MARKS | #### **SECTION C** #### **Issues and Debates** 5 During the college summer holiday, Rhianna went to a large music festival where she saw musicians and bands who played various genres of music. These included rock, dance, hip hop, grime, and pop music genres. Rhianna enjoyed dancing and singing with her three best friends when listening to all of the music genres at the festival. They all joined in when the artists encouraged certain behaviours such as clapping hands or singing lyrics. When listening to music on her iPhone, Rhianna really enjoys listening to rock and pop music genres but does not really like grime or hip hop. You must make reference to the context in your answer. Evaluate how far social psychology can account for human behaviour, such as that of listening to music. | , in the second of | (12) | |---|------|
 | |-----------------------------------|
 | (Total for Question 5 = 12 marks) | | | | TOTAL FOR SECTION C = 32 MARKS TOTAL FOR PAPER = 80 MARKS | |---| | (Total for Question 6 = 20 marks) |
 | # **BLANK PAGE**