Surname	Centre Number	Candidate Number
First name(s)		0
	<u> </u>	

GCSE

C500U10-1

MONDAY, 16 MAY 2022 – AFTERNOON

COMPUTER SCIENCE – Component 1

Understanding Computer Science

1 hour 45 minutes

For Examiner's use only				
Question	Maximum Mark	Mark Awarded		
1.	7			
2.	14			
3.	6			
4.	5			
5.	12			
6.	6			
7.	10			
8.	10			
9.	10			
10.	5			
11.	7			
12.	8			
Total	100			

INSTRUCTIONS TO CANDIDATES

Use black ink or black ball-point pen. Do not use gel pen or correction fluid.

Write your name, centre number and candidate number in the spaces at the top of this page.

Answer all questions.

Write your answers in the spaces provided in this booklet. If you run out of space, use the additional page(s) at the back of the booklet, taking care to number the question(s) correctly.

INFORMATION FOR CANDIDATES

The number of marks is given in brackets at the end of each question or part-question.

You are reminded of the need for good English and orderly, clear presentation in your answers.

The use of calculators is not permitted in this examination.

The total number of marks is 100.

Some questions will require you to draw on knowledge from multiple areas of your course of study.

BLANK PAGE

2

PLEASE DO NOT WRITE ON THIS PAGE

Answer **all** questions.

- 1. Cybersecurity reduces the risk to individuals and organisations of a cyberattack.
 - (a) Tick (\checkmark) the threat to computer systems that matches each characteristic.

Characteristic	Worm	Phishing	Denial of service
Making a website unavailable to legitimate users by swamping them with fake requests.			
Self-replicating programs that enable remote control of the infected computer.			
Fake emails asking you to confirm personal details.			

(b) Describe the following types of attack.

 (i) Brute force attack.
 [2]

 (ii) SQL injection.
 [2]

C500U101 03

Examiner only

[3]

			Examiner
(C)	Give two benefits of increasing cache memory.	[2]	Only
	Benefit 1:		
		••••••	
	Benefit 2 [.]		
		••••••	
(d)	Describe the function of virtual memory in a computer system.	[2]	
		••••••	
		•••••••	
		······	00101
			C 20
		••••••	

(c) Circle **two** items contained in a data packet.

[2]

Clock speed	Source address	Gateway	Defragmenter	Router
Checksum	Switch	Compiler address	Subroutine	Library

. /						
	A	В	\overline{A}	$\overline{A} \oplus B$	$A \cdot (\overline{A} \oplus B)$	
(b)	State the simples table in 4 (a).	t Boolean expres	sion represente	d in the last colu	mn from the truth	[1]

C500U101 07

(a)) Complete the following sentences.				
	(i)	returns a value large	occurs when r than its range.	the execution of a set of in	structions [1]
	(ii)	the result of a calcula memory.	ation is smaller than the	on in a computer program v computer can actually rep	where resent in [1]
(b)	Com coun	nplete the table by conv nting systems.	verting between binary,	denary and hexadecimal r	number [3]
		Binary	Denary	Hexadecimal]
		01010101 ₂		55 ₁₆	
			117 ₁₀	75 ₁₆	_
		10111101,	189 ₁₀		
(C)	Shov	w how 9 ₁₀ would be su tion and a 5-bit registe	btracted from 21 ₁₀ usin	g two's complementation, b	binary [4]
(c)	Shov	w how 9 ₁₀ would be su tion and a 5-bit registe	btracted from 21 ₁₀ usin	g two's complementation, b	binary [4]
(c)	Shov	w how 9 ₁₀ would be su tion and a 5-bit registe	btracted from 21 ₁₀ usin	g two's complementation, b	oinary [4]
(c)	Shov	w how 9 ₁₀ would be su tion and a 5-bit registe	btracted from 21 ₁₀ usin	g two's complementation, b	oinary [4]
(c)	Shov	w how 9 ₁₀ would be su tion and a 5-bit registe	btracted from 21 ₁₀ usin	g two's complementation, b	binary [4]
(c)	Shov	w how 9 ₁₀ would be su tion and a 5-bit registe	btracted from 21 ₁₀ usin	g two's complementation, b	binary [4]
(c)	Shov	w how 9 ₁₀ would be su tion and a 5-bit registe	btracted from 21 ₁₀ usin	g two's complementation, b	binary [4]

		9		
(d)	(i)	Shift the following binary number right 2 places.	[1]	Examine only
	(ii)	State the effect of the following arithmetic shifts. Shift left 3 places:	[2]	
	······	Shift right 4 places:		
	<u></u>			

(a) $A \cdot A + B \cdot (\overline{B} + C)$ [3] (b) $\overline{X} + \overline{X} \cdot \overline{Y} + \overline{Y} \cdot \overline{Y} + \overline{Y}$ [3]	ot use truth tables in the simplifications	
(a) $\overline{A} \cdot \overline{A} + \overline{B} \cdot (\overline{B} + C)$ [3] (b) $\overline{X} + \overline{X} \cdot Y + Y \cdot \overline{Y} + \overline{Y}$ [3]	(a + b + b)	
(b) $\overline{X} + \overline{X} \cdot Y + Y \cdot \overline{Y} + \overline{Y}$ [3]	$A \cdot A + B \cdot (B + C)$	[3]
(b) $\overline{X} + \overline{X} \cdot Y + Y \cdot \overline{Y} + \overline{Y}$ [3]		
(b) $\overline{X} + \overline{X} \cdot Y + Y \cdot \overline{Y} + \overline{Y}$ [3]		
(b) $\overline{X} + \overline{X} \cdot Y + Y \cdot \overline{Y} + \overline{Y}$ [3]		
(b) $\overline{X} + \overline{X} \cdot Y + Y \cdot \overline{Y} + \overline{Y}$ [3]		
(b) $\overline{X} + \overline{X} \cdot Y + \overline{Y} \cdot \overline{Y} + \overline{Y}$ [3]		
(b) $\overline{X} + \overline{X} \cdot Y + Y \cdot \overline{Y} + \overline{Y}$ [3]		
(b) $\overline{X} + \overline{X} \cdot Y + Y \cdot \overline{Y} + \overline{Y}$ [3]		
(b) $\overline{X} + \overline{X} \cdot Y + Y \cdot \overline{Y} + \overline{Y}$ [3]		
	$\overline{X} + \overline{X} \cdot Y + Y \cdot \overline{Y} + \overline{Y}$	[3]
		These in the simplifications. $A \cdot A + B \cdot (B + C)$ $\overline{X} + \overline{X} \cdot Y + Y \cdot \overline{Y} + \overline{Y}$

BLANK PAGE

11

PLEASE DO NOT WRITE ON THIS PAGE

		∃Examine
•	A prize is awarded to the student(s) who gain the highest mark in a class test. If more than one student gains the highest mark, each of the students gaining this mark is awarded a prize. All marks are positive integers.	only
	 Write an algorithm, using pseudo-code, which inputs: the number of students in the group the mark for each student. 	
	Its outputs should be: the maximum mark the number of prizes the mean mark for all students who took the test. 	
	For instance if the inputs are: • 8 • 17 16 11 17 16 17 14 11	
	the outputs should be: • Maximum Mark = 17 • Number of Prizes = 3 • Mean Mark = 14.875 [10]	

			Examine
13	© WJEC CBAC Ltd.	(C500U10-1)	Turn over.

8.	Sound sampling is used for the digital storage of sound.	Examir only
	(a) Describe the process of sound sampling.	[2]
	(b) Describe how sound samples are stored.	[2]

Examiner only The storage requirements for a sound file can be determined using the following (C) formula: sound file size(bits) = duration(s) \times no. of channels \times sample rate(Hz) \times bit depth(bits) A sound file is created using a 5 minute dual-channel sound file (at a bit depth of (i) 16 bits) with a sample rate of 44.1 kHz. Calculate the file size in bits. [2] (ii) Convert your answer to 8(c)(i) into megabytes. [2] (d) Metadata describes and gives information about other data. Give two examples of metadata stored in sound files. [2]

Operating systems are a low-level software that support a computer's basic functions.				
(a)	Desc	cribe how the operating system manages:		
	(i)	Multitasking.	[2]	
	(ii) 	Backing store.	[2]	
	·····			
(b)	Desc	ribe the purpose of three different types of utility software.	[6]	
(b)	Desc	cribe the purpose of three different types of utility software.	[6]	
(b)	Desc	cribe the purpose of three different types of utility software.	[6]	
(b)	Desc	cribe the purpose of three different types of utility software.	[6]	
(b)	Desc	cribe the purpose of three different types of utility software.	[6]	
(b)	Desc	cribe the purpose of three different types of utility software.	[6]	
(b)	Desc	cribe the purpose of three different types of utility software.	[6]	
(b)	Desc	cribe the purpose of three different types of utility software.	[6]	
(b)	Desc	cribe the purpose of three different types of utility software.	[6]	
(b)	Desc	cribe the purpose of three different types of utility software.	[6]	
(b)	Desc	cribe the purpose of three different types of utility software.	[6]	
(b)	Desc	cribe the purpose of three different types of utility software.	[6]	

Describe the characteristics of a merge sort algorithm.	[5]	Exam onl
	Describe the characteristics of a merge sort algorithm.	Describe the characteristics of a merge sort algorithm. [5]

12 . (a	a)	Complete the following sentences about the different stages of compilation. Use only the terms given below.				
		LEX	(ICAL ANALYSIS	CODE GENERATION	CODE OPTIMISATION	
		SYNTAX ANALYSIS		LOSSLESS COMPRESSION	SEMANTIC ANALYSIS	
		(i)	Variables are chec that they are of the	ked during the correct data type.	stage to ensure [1]	
		(ii)	During the identifiers are repla	aced by 'tokens'.	words, constants and [1]	
		(iii)	Tokens are checked	d to see if they match the spelling a	and grammar expected, using	
			standard language	definitions during the	stage. [1]	
		(iv)	intense.	may be employed to n	nake programs less resource [1]	
(b)	b)	Desc	cribe the function of t	the following translators.		
		······				
		(ii)	Assemblers.		[2]	
		······				
				END OF PAPER		

Question number	Additional page, if required. Write the guestion number(s) in the left-hand margin.	Examiner only

